Linear Partial Differential Equations of First Order as Bi-Dimensional Inverse Moments Problem

Show more

References

[1] Akheizer, N.I. (1965) The Classical Moment Problem. Olivier and Boyd, Edinburgh.

[2] Akheizer, N.I. and Krein, M.G. (1962) Some Questions in the Theory of Moment. American Mathematical Society. Providence.

[3] Shohat, J.A. and Tamarkin, J.D. (1943) The Problem of Moments. Mathematical Surveys, American Mathematical Society, Providence.

http://dx.doi.org/10.1090/surv/001

[4] Ang, D.D., Gorenflo, R., Le, V.K. and Trong, D.D. (2002) Moment Theory and Some Inverse Problems in Potential Theory and Heat Conduction. Lectures Notes in Mathematics, Springer-Verlag, Berlin.

http://dx.doi.org/10.1007/b84019

[5] Pintarelli, M.B. and Vericat, F. (2012) Klein-Gordon Equation as a Bi-Dimensional Moment Problem. Far East Journal of Mathematical Sciences, 70, 201-225.

[6] Tikhonov, A. and Arsenine, V. (1976) Méthodes de résolution de problèmes mal posés. MIR, Moscow.

[7] Engl, H.W. and Groetsch, C.W. (1987) Inverse and Ill-Posed Problems. Academic Press, Boston.

[8] Pintarelli, M.B. and Vericat, F. (2008) Stability Theorem and Inversion Algorithm for a Generalized Moment Problem. Far East Journal of Mathematical Sciences, 30, 253-274.

[9] Pintarelli, M.B. and Vericat, F. (2011) Bi-Dimensional Inverse Moment Problems. Far East Journal of Mathematical Sciences, 54, 1-23.

[10] Talenti, G. (1987) Recovering a Function from a Finite Number of Moments. Inverse Problems, 3, 501-517.

http://dx.doi.org/10.1088/0266-5611/3/3/016

[11] Ames, W.F. (1992) Numerical Methods for Partial Differential Equations. Academic Press, New York.

[12] Lapidus, L. and Pinder, G.F. (1982) Numerical Solution of Partial Differential Equations in Science and Engineering. John Wiley and Sons, New York.

[13] Smith, G.D. (1985) Numerical Solution of Partial Differential Equations: Finite Difference Methods. Oxford University Press, New York.

[14] Thomas, J.W. (1995) Numerical Partial Differential Equations: Finite Difference Methods. Springer-Verlag, New York.

http://dx.doi.org/10.1007/978-1-4899-7278-1