[1] Hanke, M.L. and Kielian, T. (2011) Toll-Like Receptors in Health and Disease in the Brain: Mechanisms and Therapeutic Potential. Clinical Science (Lond), 121, 367-387.
http://dx.doi.org/10.1042/CS20110164
[2] Cutolo, M., Soldano, S., Contini, P., Sulli, A., Seriolo, B., Montagna, P. and Brizzolara, R. (2013) Intracellular NF- kB-Decrease and IKBalpha Increase in Human Macrophages Following CTLA4-Ig Treatment. Clinical and Experimental Rheumatology, 31, 943-946.
[3] Trinh, D.V., Zhu, N., Farhang, G., Kim, B.J. and Huxford, T. (2008) The Nuclear IkappaB Protein IkappaB Zeta Specifically Binds NF-kappaB p50 Homodimers and Forms a Ternary Complex on kappaB DNA. Journal of Molecular Biology, 379, 122-135.
http://dx.doi.org/10.1016/j.jmb.2008.03.060
[4] Kayama, H., Ramirez-Carrozzi, V.R., Yamamoto, M., Mizutani, T., Kuwata, H., Iba, H., Matsumoto, M., Honda, K., Smale, S.T. and Takeda, K. (2008) Class-Specific Regulation of Pro-Inflammatory Genes by MyD88 Pathways and IkappaBzeta. Journal of Biological Chemistry, 283, 12468-12477.
http://dx.doi.org/10.1074/jbc.M709965200
[5] Hildebrand, D.G., Alexander, E., Horber, S., Lehle, S., Obermayer, K., Munck, N.A., Rothfuss, O., Frick, J.S., Morimatsu, M., Schmitz, I., Roth, J., Ehrchen, J.M., Essmann, F. and Schulze-Osthoff, K. (2013) IkappaBzeta Is a Transcriptional Key Regulator of CCL2/MCP-1. Journal of Immunology, 190, 4812-4820.
[6] Huang, B., Yang, X.D., Lamb, A. and Chen, L.F. (2010) Posttranslational Modifications of NF-kappaB: Another Layer of Regulation for NF-kappaB Signaling Pathway. Cell Signal, 22, 1282-1290.
http://dx.doi.org/10.1016/j.cellsig.2010.03.017
[7] Zuckerman, L. and Weiner, I. (2005) Maternal Immune Activation Leads to Behavioral and Pharmacological Changes in the Adult Offspring. Journal of Psychiatric Research, 39, 311-323.
http://dx.doi.org/10.1016/j.jpsychires.2004.08.008
[8] Kramer, B.W., Ikegami, M., Moss, T.J., Nitsos, I., Newnham, J.P. and Jobe, A.H. (2005) Endotoxin-Induced Chorioamnionitis Modulates Innate Immunity of Monocytes in Preterm Sheep. American Journal of Respiratory and Critical Care Medicine, 171, 73-77.
http://dx.doi.org/10.1164/rccm.200406-745OC
[9] Hodyl, N.A., Krivanek, K.M., Lawrence, E., Clifton, V.L. and Hodgson, D.M. (2007) Prenatal Exposure to a Pro-In- flammatory Stimulus Causes Delays in the Development of the Innate Immune Response to LPS in the Offspring. Journal of Neuroimmunology, 190, 61-71.
http://dx.doi.org/10.1016/j.jneuroim.2007.07.021
[10] Lasala, N. and Zhou, H. (2007) Effects of Maternal Exposure to LPS on the Inflammatory Response in the Offspring. Journal of Neuroimmunology, 189, 95-101.
http://dx.doi.org/10.1016/j.jneuroim.2007.07.010
[11] Harnett, E.L., Dickinson, M.A. and Smith, G.N. (2007) Dose-Dependent Lipopolysaccharide-Induced Fetal Brain Injury in the Guinea Pig. American Journal of Obstetrics and Gynecology, 197, 179. e1-179. e7.
http://dx.doi.org/10.1016/j.ajog.2007.03.047
[12] Garay, P.A., Hsiao, E.Y., Patterson, P.H. and McAllister, A.K. (2013) Maternal Immune Activation Causes Age- and Region-Specific Changes in Brain cytokines in Offspring throughout Development. Brain, Behavior, and Immunity, 31, 54-68.
http://dx.doi.org/10.1016/j.bbi.2012.07.008
[13] Ortega, A., Jadeja, V. and Zhou, H.P. (2011) Postnatal Development of Lipopolysaccharide-induced Inflammatory Response in the Brain. Inflammation Research, 60, 175-185.
http://dx.doi.org/10.1007/s00011-010-0252-y
[14] Kitamura, H., Kanehira, K., Okita, K., Morimatsu, M. and Saito, M. (2000) MAIL, a Novel Nuclear IκB Protein That Potentiates LPS-Induced IL-6 Production. FEBS Letters, 485, 53-56.
http://dx.doi.org/10.1016/S0014-5793(00)02185-2
[15] Sun, S.C., Ganchi, P.A., Ballard, D.W. and Greene, W.C. (1993) NF-κB Controls Expression of Inhibitor IκB Alpha: Evidence for an Inducible Autoregulatory Pathway. Science, 259, 1912-1915.
http://dx.doi.org/10.1126/science.8096091
[16] Yamazaki, S., Muta, T., Matsuo, S. and Takeshige, K. (2005) Stimulus-Specific Induction of a Novel Nuclear Factor- κB Regulator, IκB-Zeta, via Toll/Interleukin-1 Receptor Is Mediated by mRNA Stabilization. Journal of Biological Chemistry, 280, 1678-1687.
http://dx.doi.org/10.1074/jbc.M409983200
[17] Kitamura, H., Kanehira, K., Shiina, T., Morimatsu, M., Jung, B.D., Akashi, S. and Saito, M. (2002) Bacterial Lipopolysaccharide Induces mRNA Expression of an IκB MAIL through Toll-Like Receptor 4. Journal of Veterinary Medical Science, 64, 419-422.
http://dx.doi.org/10.1292/jvms.64.419
[18] Ito, T., Morimatsu, M., Oonuma, T., Shiina, T., Kitamura, H. and Syuto, B. (2004) Transcriptional Regulation of the MAIL Gene in LPS-Stimulated RAW264 Mouse Macrophages. Gene, 342, 137-143.
http://dx.doi.org/10.1016/j.gene.2004.07.032
[19] Lehnardt, S. (2010) Innate Immunity and Neuroinflammation in the CNS: The Role of Microglia in Toll-Like Receptor-Mediated Neuronal Injury. Glia, 58, 253-263.
[20] Skaper, S.D. (2007) The Brain as a Target for Inflammatory Processes and Neuroprotective Strategies. Annals of the New York Academy of Sciences, 1122, 23-34.
http://dx.doi.org/10.1196/annals.1403.002
[21] Jean-Baptiste, E. (2007) Cellular Mechanisms in Sepsis. Journal of Intensive Care Medicine, 22, 63-72.
http://dx.doi.org/10.1177/0885066606297123
[22] Bosshart, H. and Heinzelmann, M. (2007) Targeting Bacterial Endotoxin: Two Sides of a Coin. Annals of the New York Academy of Sciences, 1096, 1-17.
http://dx.doi.org/10.1196/annals.1397.064
[23] Blasko, I., Stampfer-Kountchev, M., Robatscher, P., Veerhuis, R., Eikelenboom, P. and Grubeck-Loebenstein, B. (2004) How Chronic Inflammation Can Affect the Brain and Support the Development of Alzheimer’s Disease in Old Age: The Role of Microglia and Astrocytes. Aging Cell, 3, 169-176.
http://dx.doi.org/10.1111/j.1474-9728.2004.00101.x
[24] Sekiyama, K., Sugama, S., Fujita, M., Sekigawa, A., Takamatsu, Y., Waragai, M., Takenouchi, T. and Hashimoto, M. (2012) Neuroinflammation in Parkinson’s Disease and Related Disorders: A Lesson from Genetically Manipulated Mouse Models of Alpha-Synucleinopathies. Parkinson’s Disease, 2012, Article ID: 271732.
http://dx.doi.org/10.1155/2012/271732
[25] Napoli, I. and Neumann, H. (2009) Microglial Clearance Function in Health and Disease. Neuroscience, 158, 1030- 1038.
http://dx.doi.org/10.1016/j.neuroscience.2008.06.046
[26] Streit, W.J., Conde, J.R., Fendrick, S.E., Flanary, B.E. and Mariani, C.L. (2005) Role of Microglia in the Central Nervous System’s Immune Response. Neurological Research, 27, 685-691.
[27] Meyer, U. (2013) Developmental Neuroinflammation and Schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 42, 20-34.
http://dx.doi.org/10.1016/j.pnpbp.2011.11.003
[28] Zhou, H.P. (2012) Maternal Infection and Neurodevelopmental Disorders in the Offspring. American Journal of Immunology, 8, 10-17.
http://dx.doi.org/10.3844/ajisp.2012.10.17
[29] Boksa, P. (2008) Maternal Infection during Pregnancy and Schizophrenia. Journal of Psychiatry & Neuroscience, 33, 183-185.
[30] Buehler, M.R. (2011) A Proposed Mechanism for Autism: An Aberrant Neuroimmune Response Manifested as a Psychiatric Disorder. Medical Hypotheses, 76, 863-870.
http://dx.doi.org/10.1016/j.mehy.2011.02.038
[31] Graciarena, M., Depino, A.M. and Pitossi, F.J. (2010) Prenatal Inflammation Impairs Adult Neurogenesis and Memory Related Behavior through Persistent Hippocampal TGFβ1 Downregulation. Brain, Behavior, and Immunity, 24, 1301- 1309.
http://dx.doi.org/10.1016/j.bbi.2010.06.005