[1] Bock, N., Riminucci, A., Dionigi, C., Russo, A., Tampieri, A., Landi, E., Goranov, A.A., Marcacci, M. and Dediu, V. (2010) A Novel Route in Bone Tissue Engineering: Magnetic Biomimetic Scaffolds. Acta Biomaterialia, 6, 786-796.
http://dx.doi.org/10.1016/j.actbio.2009.09.017
[2] Giannoudis, P.V., Einhorn, T.A. and Marsh, D. (2007) Fracture Healing: The Diamond Concept. Injury, 38, S3-S6.
http://dx.doi.org/10.1016/S0020-1383(08)70003-2
[3] Meng, J., Xiao, B., Zhang, Y., Liu, J., Xue, H., Lei, J., Kong, H., Huang, Y., Jin, Z., Gu, N. and Xu, H. (2013) Super-Paramagnetic Responsive Nanofibrous Scaffolds under Static Magnetic Field Enhance Osteogenesis for Bone Repair in Vivo. Scientific Reports, 3, Article No. 2655.
http://dx.doi.org/10.1038/srep02655
[4] Li, G., Feng, S. and Zhou, D. (2011) Magnetic Bioactive Glass Ceramic in the System CaO-P2O5-SiO2-MaO-CaF2- MnO2-Fe2O3 for Hyperthermia Treatment of Bone Tumor. Journal of Materials Science: Materials in Medicine, 22, 2197-2206.
http://dx.doi.org/10.1007/s10856-011-4417-1
[5] Matsumine, A., Kusuzaki, K., Matsubara, T., Shintani, K., Satonaka, H., Wakabayashi, T., Miyazaki, S., Morita, K., Takegami, K. and Uchida, A. (2007) Novel Hyperthermia for Metastatic Bone Tumors with Magnetic Materials by Generating an Alternating Electromagnetic Field. Clinical and Experimental Metastasis, 24, 191-200.
http://dx.doi.org/10.1016/j.actbio.2012.03.045
[6] Lin, T.C., Lin, F.H. and Lin, J.C. (2012) In Vitro Feasibility Study of the Use of a Magnetic Electrospun Chitosan Nanofiber Composite for Hyperthermia Treatment of Tumor Cells. Acta Biomaterialia, 8, 2704-2711.
http://dx.doi.org/10.1016/j.actbio.2012.03.045
[7] Gleich, B. and Weizenecker, J. (2005) Tomographic Imaging Using the Nonlinear Response of Magnetic Particles. Nature, 435, 1214-1217.
http://dx.doi.org/10.1038/nature03808
[8] Goodwill, P.W., Konkle, J.J., Zheng, B., Saritas, E.U. and Conolly, S.M. (2012) Projection X-Space Magnetic Particle Imaging. IEEE Transactions on Medical Imaging, 31, 1076-1085.
http://dx.doi.org/10.1109/TMI.2012.2185247
[9] Murase, K., Hiratsuka, S., Song, R. and Takeuchi, Y. (2014) Development of a System for Magnetic Particle Imaging Using Neodymium Magnets and Gradiometer. Japanese Journal of Applied Physics, 53, Article ID: 067001.
http://dx.doi.org/10.7567/JJAP.53.067001
[10] Murase, K., Song, R. and Hiratsuka, S. (2014) Magnetic Particle Imaging of Blood Coagulation. Applied Physics Letters, 104, Article ID: 252409.
http://dx.doi.org/10.1063/1.4885146
[11] Dutta, A.K., Kawamoto, N., Sugino, G., Izawa, H., Morimoto, M., Saimoto, H. and Ifuku, S. (2013) Simple Preparation of Chitosan Nanofibers from Dry Chitosan Powder by the Start Burst System. Carbohydrate Polymers, 97, 363-367.
http://dx.doi.org/10.1016/j.carbpol.2013.05.010
[12] Murase, K., Konishi, T., Takeuchi, Y., Takata, H. and Saito, S. (2013) Experimental and Simulation Studies on the Be- havior of Signal Harmonics in Magnetic Particle Imaging. Radiological Physics and Technology, 6, 399-414.
http://dx.doi.org/10.1007/s12194-013-0213-6
[13] Murase, K., Banura, N., Mimura, A. and Nishimoto, K. (2015) Simple and Practical Method for Correcting the Inhomogeneous Sensitivity of a Receiving Coil in Magnetic Particle Imaging. Japanese Journal of Applied Physics, 54, Article ID: 038001.
http://dx.doi.org/10.7567/JJAP.54.038001
[14] Murase, K., Oonoki, J., Takata, H., Song, R., Angraini, A., Ausanai, P. and Matsushita, T. (2011) Simulation and Experimental Studies on Magnetic Hyperthermia with Use of Superparamagnetic Iron Oxide Nanoparticles. Radiological Physics and Technology, 4, 194-202.
http://dx.doi.org/10.1007/s12194-011-0123-4
[15] Box, G.E.P. and Lucas, H.L. (1959) Design of Experiments in Nonlinear Situations. Biometrika, 46, 77-90.
http://dx.doi.org/10.1093/biomet/46.1-2.77
[16] Murase, K., Takata, H., Takeuchi, Y. and Saito, S. (2013) Control of the Temperature Rise in Magnetic Hyperthermia with Use of a Static Magnetic Field. Physica Medica, 29, 624-630.
http://dx.doi.org/10.1016/j.ejmp.2012.08.005
[17] Robson, M.D., Gatehouse, P.D., Bydder, M. and Bydder, G.M. (2003) Magnetic Resonance: An Introduction to Ultrashort TE (UTE) Imaging. Journal of Computer Assisted Tomography, 27, 825-846.
http://dx.doi.org/10.1097/00004728-200311000-00001
[18] Idiyatullin, D., Corum, C., Park, J.Y. and Garwood, M. (2006) Fast and Quiet MRI Using a Swept Radiofrequency. Journal of Magnetic Resonance, 181, 342-349.
http://dx.doi.org/10.1016/j.jmr.2006.05.014
[19] Zhang, J.J., Chamberlain, R., Etheridge, M., Idiyatullin, D., Corum, C., Bischof, J. and Garwood, M. (2014) Quantifying Iron-Oxide Nanoparticles at High Concentration Based on Longitudinal Relaxation Using a Three-Dimensional SWIFT Look-Locker Sequence. Magnetic Resonance in Medicine, 71, 1982-1988.
http://dx.doi.org/10.1002/mrm.25181
[20] Hoopes, P.J., Petryk, A.A., Tate, J.A., Savellano, M.S., Strawbridge, R.R., Giustini, A.J., Stan, R.V., Gimi, B. and Garwood, M. (2013) Imaging and Modification of the Tumor Vascular Barrier for Improvement in Magnetic Nanoparticle Uptake and Hyperthermia Treatment Efficacy. Proceedings SPIE Energy-Based Treatment of Tissue and Assessment VII, 8584, Article ID: 858403.
http://dx.doi.org/10.1117/12.2008689
[21] Kim, Y.J., Ebara, M. and Aoyagi, T. (2013) A Smart Hyperthermia Nanofiber with Switchable Drug Release for Inducing Cancer Apoptosis. Advanced Functional Materials, 23, 5753-5761.
http://dx.doi.org/10.1002/adfm.201300746