[1] Vijay, R., Slichter, D.H. and Siddiqi, I. (2011) Observation of Quantum Jumps in a Superconducting Artificial Atom. Physical Review Letters, 106, Article ID: 110502.
http://dx.doi.org/10.1103/PhysRevLett.106.110502
[2] Peil, S. and Gabrielse, G. (1999) Observing the Quantum Limit of an Electron Cyclotron: QND Measurements of Quantum Jumps between Fock States. Physical Review Letters, 83, 1287-1290.
[3] Sauter, T., Neuhauser, W., Blatt, R. and Toschek, P.E. (1986) Observation of Quantum Jumps. Physical Review Letters, 57, 1696-1698.
http://dx.doi.org/10.1103/PhysRevLett.57.1696
[4] Bergquist, J.C., Hulet, R.G., Itano, W.M. and Wineland, D.J. (1986) Observation of Quantum Jumps in a Single Atom. Physical Review Letters, 57, 1699-1702.
http://dx.doi.org/10.1103/PhysRevLett.57.1699
[5] Bohr, N. (1913) On the Constitution of Atoms and Molecules. Philosophical Magazine, 26, 1-25.
http://dx.doi.org/10.1080/14786441308634955
[6] Dum, R., Zoller, P. and Ritsch, H. (1992) Monte Carlo Simulation of the Atomic Master Equation for Spontaneous Emission. Physical Review A, 45, 4879.
http://dx.doi.org/10.1103/PhysRevA.45.4879
[7] Dalibard, J., Castin, Y. and Mølmer, K. (1992) Wave-Function Approach to Dissipative Processes in Quantum Optics. Physical Review Letters, 68, 580.
[8] Gatarek, D. (1991) Continuous Quantum Jumps and Infinite-Dimensional Stochastic Equations. Journal of Mathematical Physics, 32, 2152-2157.
[9] Molmer, K., Castin, Y. and Dalibard, J. (1993) Monte Carlo Wave-Function Method in Quantum Optics. Journal of the Optical Society of America B, 10, 524-538.
http://dx.doi.org/10.1364/JOSAB.10.000524
[10] Gardiner, C.W., Parkins, A.S. and Zoller, P. (1992) Wave-Function Quantum Stochastic Differential Equations and Quantum-Jump Simulation Methods. Physical Review A, 46, 4363-4381.
[11] Vogt, N., Jeske, J. and Cole, J.H. (2013) Stochastic Bloch-Redfield Theory: Quantum Jumps in a Solid-Stateenvironment. Physical Review B, 88, Article ID: 174514.
[12] Reiner, J.E., Wiseman, H.M. and Mabuchi, H. (2003) Quantum Jumps between Dressed States: A Proposed Cavity-QED Test Using Feedback. Physical Review A, 67, Article ID: 042106.
http://dx.doi.org/10.1103/PhysRevA.67.042106
[13] Berkeland, D.J., Raymondson, D.A. and Tassin, V.M. (2004) Tests for Non-Randomness in Quantum Jumps. Physical Review A, 69, Article ID: 052103.
[14] Wiseman, H.M. and Milburn, G.J. (1993) Interpretation of Quantum Jump and Diffusion Processes Illustrated on the Bloch Sphere. Physical Review A, 47, 1652-1666.
http://dx.doi.org/10.1103/PhysRevA.47.1652
[15] Wiseman, H.M. and Toombes, G.E. (1999) Quantum Jumps in a Two-Level Atom: Simple Theories versus Quantum Trajectories. Physical Review A, 60, 2474.
http://dx.doi.org/10.1103/PhysRevA.60.2474
[16] Stojanovic, M. (2008) Regularization for Heat Kernel in Nonlinear Parabolic Equations. Taiwanese Journal of Mathematics, 12, 63-87.
http://www.tjm.nsysu.edu.tw/
[17] Garetto, C. (2008) Fundamental Solutions in the Colombeau Framework: Applications to Solvability and Regularity Theory. Acta Applicandae Mathematicae, 102, 281-318.
http://dx.doi.org/10.1007/s10440-008-9220-8
[18] Foukzon, J., Potapov, A.A. and Podosenov, S.A. (2011) Exact Quasiclassical Asymptotics beyond Maslov Canonical Operator. International Journal of Recent advances in Physics, 3.
http://arxiv.org/abs/1110.0098
[19] Feynman, E.N. (1964) Integrals and the Schrodinger Equation. Journal of Mathematical Physics, 5, 332-343.
http://dx.doi.org/10.1063/1.1704124
[20] Maslov, V.P. (1976) Complex Markov Cheins and Continual Feynman Integral. Nauka, Moskov.
[21] Apostol, T.M. (1974) Mathematical Analysis. 2nd Edition, Addison-Wesley, Boston.
[22] Chen, W.W.L. (2003) Fundamentals of Analysis. Published by Chen, W.W.L. via Internet.
[23] Gupta, S.L. and Rani, N. (1998) Principles of Real Analysis. Vikas Puplishing House, New Delhi.
[24] Lehmann, J., Reimann, P. and Hanggi, P. (2000) Surmounting Oscillating Barriers: Path-Integral Approach for Weak Noise. Physical Review E, 62, 6282.
http://dx.doi.org/10.1103/PhysRevE.62.6282
[25] Fedoryuk, M.V. (1977) The Method of Steepest Descent. Moscow. (In Russian)
[26] Fedoryuk, M.V. (1989) Asymptotic Methods in Analysis. Encyclopaedia of Mathematical Sciences, 13, 83-191.
http://dx.doi.org/10.1007/978-3-642-61310-4_2
[27] Shun, Z. and McCullagh, P. (1995) Laplace Approximation of High Dimensional Integrals. Journal of the Royal Statistical Society: Series B (Methodological), 57, 749-760.
[28] Foukzon, J. (2014) Strong Large Deviations Principles of Non-Freidlin-Wentzell Type-Optimal Control Problem with Imperfect Information—Jumps Phenomena in Financial Markets. Communications in Applied Sciences, 2, 230-363.