AM  Vol.6 No.5 , May 2015
Numerical Modelling and Simulation of Sand Dune Formation in an Incompressible Out-Flow
Author(s) Yahaya Mahamane Nourialassanenouri@yahoo.fr, Saley Bisso
ABSTRACT
In this paper, we are concerned with computation of a mathematical model of sand dune formation in a water of surface to incompressible out-flows in two space dimensions by using Chebyshev projection scheme. The mathematical model is formulate by coupling Navier-Stokes equations for the incompressible out-flows in 2D fluid domain and Prigozhin’s equation which describes the dynamic of sand dune in strong parameterized domain in such a way which is a subset of the fluid domain. In order to verify consistency of our approach, a relevant test problem is considered which will be compared with the numerical results given by our method.

Cite this paper
Nouri, Y. and Bisso, S. (2015) Numerical Modelling and Simulation of Sand Dune Formation in an Incompressible Out-Flow. Applied Mathematics, 6, 864-876. doi: 10.4236/am.2015.65080.
References
[1]   Prigozhin, L. (1994) Sandpiles and River Networks: Extended Systems with Nonlocal Interactions. Physical Review E, 49, 1161.
http://dx.doi.org/10.1103/physreve.49.1161

[2]   Igbida, N. (2012) Mathematical Models for Sandpile Problems. XLIM-DMI, UMR-CNRS 6172, Workshop MathEnv, Essaouira.

[3]   Nouri, Y.M. and Bisso, S. (2013) Numerical Approach for Solving a Mathematical Model of Sand Dune Formation. Pioneer Journal of Advances in Applied Mathematics, 9, 1-15.

[4]   R?nquist, E.M. (1990) Optimal Spectral Element Methods for the Unsteady 3-Dimensionnal Incompressible Navier-Stokes Equations. Ph.D. Thesis, Mass, Cambridge.

[5]   Azaez, M. (1990) Computation of the Pressure in the Stokes Problem for Incompressible Viscous Fluids by a Spectral Method Collocation. Thesis of Doctorate, Paris-Sud University, Orsay.

[6]   Botella, O. (1996) Resolution des equations de Navier-Stokes par des schemas de Projection Tchebychev. Rapport de recherche No. 3018 de L’Institut national de rechercheen informatique et en automatique (inria).

[7]   Maday, Y., Patera, A.T. and R?nquist, E.M. (1992) The Method for the Approximation of the Stokes Problem. Laboratoire d’Analyse Numerique, Paris VI, 11, fasc.4.

[8]   Chorin, A. (1968) Numerical Simulation of the Navier-Stokes Equations. Mathematics of Computation, 22, 745-762.
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2

[9]   Temam, R. (1969) On the Approximation of the Solution of Navier-Stokes Equations by the Fractional Steps Method II. Archive for Rational Mechanics and Analysis, 32, 377-385.

[10]   Azaez, M., Bernardi, C. and Grundmann, M. (1994) Spectral Methods Applied to Porous Media Equations. East-West Journal of Numerical Mathematics, 2, 91-105.

[11]   Brezzi, F. (1974) On the Existence, Uniqueness and Approximation of Saddle-Point Problems Arising from Lagrangian Multipliers. R.A.I.R.O, R2, 129-151.

[12]   Hesthaven, J.S., Gottlieb, S. and Gottlieb, D. (2007) Spectral Methods for Time-Dependent Problems. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511618352

[13]   Trefethen, L.N. (2000) Spectral Methods in MATLAB.
http://dx.doi.org/10.1137/1.9780898719598

[14]   Canuto, C., Bernardi, C. and Maday, Y. (1986) Generalized Inf-Sup Condition for Chebyshev Approximation of the Navier-Stokes Equations. Technical Report, No. 86-61, ICASE.

[15]   Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A. (1988) Spectral Methods in Fluid Dynamics. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-3-642-84108-8

[16]   Ehrenstein, U. and Peyret, R. (1989) A Chebyshev-Collocation Method for the Navier-Stokes Equations with Application to Double-Diffusive Convection. International Journal for Numerical Methods in Fluids, 9, 427-452.
http://dx.doi.org/10.1002/fld.1650090405

[17]   Azaez, M., Fikri, A. and Labrosse, G. (1994) A Unique Grid Spectral Solver of the nd Cartesian Unsteady Stokes System. Illustrative Numerical Results. Finite Elements in Analysis and Design, 16, 247-260.
http://dx.doi.org/10.1016/0168-874X(94)90068-X

 
 
Top