JMP  Vol.6 No.6 , May 2015
Spin Polarization of Fractional Quantum Hall States with ν < 2
Author(s) Shosuke Sasaki*
ABSTRACT
The spin polarization of a fractional quantum Hall state shows very interesting properties. The curve of polarization versus magnetic field has wide plateaus. The fractional quantum Hall effect is caused by the Coulomb interaction because the 2D electron system without the Coulomb interaction yields no energy gap at the fractional filling factor. Therefore, the wide plateau in the polarization curve is also caused by the Coulomb interaction. When the magnetic field is weak, some electrons have up-spins and the others down-spins. Therein the spin-exchange transition occurs between two electrons with up and down spins via the Coulomb interaction. Then the charge distribution before the transition is the same as one after the transition. So these two states have the same classical Coulomb energy. Accordingly, the partial Hamiltonian composed of the spin exchange interaction should be treated exactly. We have succeeded in diagonalizing the spin exchange interaction for the first and second nearest electron pairs. The theoretical results reproduce the wide plateaus very well. If the interval modulations between Landau orbitals are taken into the Hamiltonian, the total energy has the Peierls instability. We can diagonalize the Hamiltonian with the interval modulation. The results reproduce wide plateaus and small shoulders which are in good agreement with the experimental data.

Cite this paper
Sasaki, S. (2015) Spin Polarization of Fractional Quantum Hall States with ν < 2. Journal of Modern Physics, 6, 794-810. doi: 10.4236/jmp.2015.66085.
References
[1]   von Klitzing, K., Landwehr, G. and Dorda, G. (1974) Solid State Communications, 14, 387-393.
http://dx.doi.org/10.1016/0038-1098(74)90566-3

[2]   Ando, T., Matsumoto, Y. and Uemura, Y. (1975) Journal of the Physical Society of Japan, 39, 279-288.
http://dx.doi.org/10.1143/JPSJ.39.279

[3]   von Klitzing, K., Dorda, G. and Pepper, M. (1980) Physical Review Letters, 45, 494.
http://dx.doi.org/10.1103/PhysRevLett.45.494

[4]   Tsui, D.C. and Gossard, A.C. (1981) Applied Physics Letters, 37, 550.
http://dx.doi.org/10.1063/1.92408

[5]   Tsui, D.C., Stormer, H.L. and Gossard, A.C. (1982) Physical Review B, 25, 1405.
http://dx.doi.org/10.1103/PhysRevB.25.1405

[6]   Tsui, D.C., Stormer, H.L. and Gossard, A.C. (1982) Physical Review Letters, 48, 1559.
http://dx.doi.org/10.1103/PhysRevLett.48.1559

[7]   Laughlin, R.B. (1983) Physical Review B, 27, 3383.
http://dx.doi.org/10.1103/PhysRevB.27.3383

[8]   Laughlin, R.B. (1983) Physical Review Letters, 50, 1395.
http://dx.doi.org/10.1103/PhysRevLett.50.1395

[9]   Girvin, S.M. (1984) Physical Review B, 29, 6012.
http://dx.doi.org/10.1103/PhysRevB.29.6012

[10]   von Klitzing, K. (1986) Reviews of Modern Physics, 58, 519-531.
http://dx.doi.org/10.1103/RevModPhys.58.519

[11]   von Klitzing, K. (1993) Nobel Lecture, December 9, 1985, The Quantized Hall Effect. In: Frangsmyr, T. and Ekspong, G., Eds., Nobel Lectures, Physics 1981-1990, World Scientific, Singapore, 317.

[12]   Willet, R., Eisenstein, J.P., Stormer, H.L., Tsui, D.C., Gossard, A.C. and English, J.H. (1987) Physical Review Letters, 59, 1776-1779.
http://dx.doi.org/10.1103/PhysRevLett.59.1776

[13]   Eisenstein, J.P. and Stormer, H.L. (1990) Science, 248, 1510-1516.
http://dx.doi.org/10.1126/science.248.4962.1510

[14]   Stormer, H.L. (2002) Nobel Lecture, December 8, 1998, The Fractional Quantum Hall Effect. In: Ekspong, G., Ed., Nobel Lectures, Physics 1996-2000, World Scientific, Singapore, 295-325.

[15]   Pan, W., Stormer, H.L., Tsui, D.C., Pfeiffer, L.N., Baldwin, K.W. and West, K.W. (2002) Physical Review Letters, 88, Article ID: 176802.
http://dx.doi.org/10.1103/PhysRevLett.88.176802

[16]   Pan, W., Stormer, H.L., Tsui, D.C., Pfeiffer, L.N., Baldwin, K.W. and West, K.W. (2003) Physical Review Letters, 90, Article ID: 016801.
http://dx.doi.org/10.1103/PhysRevLett.90.016801

[17]   Novoselov, K.S., Jiang, Z., Zhang, Y., Morozov, S.V., Stormer, H.L., Zeitler, U., Maan, J.C., Boebinger, G.S., Kim, P. and Geim, A.K. (2007) Science, 315, 1379.
http://dx.doi.org/10.1126/science.1137201

[18]   Jeckelmann, B. and Jeanneret, B. (2001) Reports on Progress in Physics, 64, 1603-1655.
http://dx.doi.org/10.1088/0034-4885/64/12/201

[19]   Tao, R. and Thouless, D.J. (1983) Physical Review B, 28, 1142-1144.
http://dx.doi.org/10.1103/PhysRevB.28.1142

[20]   Tao, R. (1984) Physical Review B, 29, 636-644.
http://dx.doi.org/10.1103/PhysRevB.29.636

[21]   Sasaki, S. (2012) Advances in Condensed Matter Physics, 2012, Article ID: 281371.
http://dx.doi.org/10.1155/2012/281371

[22]   Sasaki, S. (2000) Physica B: Condensed Matter, 281-282, 838-839.
http://dx.doi.org/10.1016/S0921-4526(99)00840-6

[23]   Sasaki, S. (2011) Binding Energy, Polarization of Fractional Quantum Hall State. Proceedings of the 25th International Conference on the Physics of Semiconductors, Part II, Osaka, 17-22 September 2000, 925-926.

[24]   Sasaki, S. (2003) Surface Science, 532-535, 567-575.
http://dx.doi.org/10.1016/S0039-6028(03)00091-8

[25]   Sasaki, S. (2008) Journal of Physics: Conference Series, 100, Article ID: 042021.
http://dx.doi.org/10.1088/1742-6596/100/4/042021

[26]   Sasaki, S. (2014) Condensed Matter Physics, 2014, Article ID: 468130.

[27]   Kukushkin, I.V., von Klitzing, K. and Eberl, K. (1999) Physical Review Letters, 82, 3665.

[28]   Jain, J.K. (2014) Indian Journal of Physics, 88, 915-929.
http://dx.doi.org/10.1007/s12648-014-0491-9

[29]   Jain, J.K. (1989) Physical Review Letters, 63, 199-202.
http://dx.doi.org/10.1103/PhysRevLett.63.199

[30]   Lopez, A. and Fradkin, E. (1991) Physical Review B, 44, 5246-5262.
http://dx.doi.org/10.1103/PhysRevB.44.5246

[31]   Halperin, B.I., Lee, P.A. and Read, N. (1993) Physical Review B, 47, 7312-7343.
http://dx.doi.org/10.1103/PhysRevB.47.7312

[32]   Schwarzschild, B. (1993) Physics Today, 46, 17-20.

[33]   Du, R.R., Stormer, H.L., Tsui, D.C., Pfeiffer, L.N. and West, K.W. (1993) Physical Review Letters, 70, 2944-2947.
http://dx.doi.org/10.1103/PhysRevLett.70.2944

[34]   Jain, J.K. (2007) Composite Fermions. Cambridge University Press, New York.
http://dx.doi.org/10.1017/CBO9780511607561

[35]   Das Sarma, S. (1996) Localization, Metal-Insulator Transitions, and Quantum Hall Effect. In: Das Sarma, S. and Pinczuk, A., Eds., Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures, Wiley, New York, 1-36.
http://dx.doi.org/10.1002/9783527617258.ch1

[36]   Jain, J.K. and Kamilla, R.K. (1998) Composite Fermions: Particles of the Lowest Landau Level. In: Heinonen, O., Ed., Composite Fermions: A Unified View of the Quantum Hall Regime, World Scientific, New York, 1-90.
http://dx.doi.org/10.1142/9789812815989_0001

[37]   Halperin, B.I. (2004) Fermion Chern-Simons Theory and the Unquantized Quantum Hall Effect. In: Das Sarma, S. and Pinczuk, A., Eds., Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures, Wiley, New York, 225-263.

[38]   Stormer, H.L. and Tsui, D.C. (1996) Composite Fermions in the Fractional Quantum Hall Effect. In: Das Sarma, S. and Pinczuk, A., Eds., Perspectives in Quantum Hall Effects: Novel Quantum Liquids in Low-Dimensional Semiconductor Structures, Wiley, New York, 285-421.
http://dx.doi.org/10.1002/9783527617258.ch10

[39]   Lopez, A. and Fradkin, E. (1998) Fermionic Chern-Simons Field Theory for the Fractional Quantum Hall Effect. In: Heinonen, O., Ed., Composite Fermions: A Unified View of the Quantum Hall Regime, World Scientific, New York, 195-253.
http://dx.doi.org/10.1142/9789812815989_0003

[40]   Simon, S.H. (1998) The Chern-Simons Fermi Liquid Description of Fractional Quantum Hall States. In: Heinonen, O., Ed., Composite Fermions: A Unified View of the Quantum Hall Regime, World Scientific, New York, 91-194.
http://dx.doi.org/10.1142/9789812815989_0002

[41]   Smet, J.H. (1998) Ballistic Transport of Composite Fermions in Semiconductor Nanostructures. In: Heinonen, O., Ed., Composite Fermions: A Unified View of the Quantum Hall Regime, World Scientific, New York, 443-491.
http://dx.doi.org/10.1142/9789812815989_0007

[42]   Jain, J.K. (2000) Physics Today, 53, 39-45.
http://dx.doi.org/10.1063/1.883035

[43]   Halperin, B.I. (2003) Physica E: Low-Dimensional Systems and Nanostructures, 20, 71-78.
http://dx.doi.org/10.1016/j.physe.2003.09.022

[44]   Murthy, G. and Shankar, R. (2003) Reviews of Modern Physics, 75, 1101-1158.
http://dx.doi.org/10.1103/RevModPhys.75.1101

[45]   Haldane, F.D.M. (1983) Physical Review Letters, 51, 605-608.
http://dx.doi.org/10.1103/PhysRevLett.51.605

[46]   Halperin, B.I. (1984) Physical Review Letters, 52, 1583-1586.
http://dx.doi.org/10.1103/PhysRevLett.52.1583

[47]   Peierls, R.E. (1955) Quantum Theory of Solids. Oxford University, London.

[48]   Sasaki, S. (2004) Surface Science, 566-568, 1040-1046.
http://dx.doi.org/10.1016/j.susc.2004.06.101

[49]   Sasaki, S. (2005) Binding Energies and Spin Polarizations of Fractional Quantum Hall States. In: Norris, C.P., Ed., Surface Science: New Research, Nova Science Publishers, Hauppauge, 103-161.

[50]   Sasaki, S. (1996) Physical Review E, 53, 168-178.
http://dx.doi.org/10.1103/PhysRevE.53.168

 
 
Top