Back
 JAMP  Vol.3 No.5 , May 2015
Generalized Darboux Transformation and Rational Solutions for the Nonlocal Nonlinear Schrödinger Equation with the Self-Induced Parity-Time Symmetric Potential
Abstract: In this paper, I construct a generalized Darboux transformation for the nonlocal nonlinear Schrodinger equation with the self-induced parity-time symmetric potential. The N-order rational solution is derived by the iterative rule and it can be expressed by the determinant form. In particular, I calculate first-order and second-order rational solutions and obtain their figures according to different parameters.
Cite this paper: Chen, J. (2015) Generalized Darboux Transformation and Rational Solutions for the Nonlocal Nonlinear Schrödinger Equation with the Self-Induced Parity-Time Symmetric Potential. Journal of Applied Mathematics and Physics, 3, 530-536. doi: 10.4236/jamp.2015.35065.
References

[1]   Bender, C.M. and Boettcher, S. (1998) Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry. Physical Review Letters, 80, 5243.
http://dx.doi.org/10.1103/PhysRevLett.80.5243

[2]   Musslimani, Z.H., Makris, K.G., El-Ganainy, R. and Christodoulides, D.N. (2008) Optical Solitons in PT Periodic Potentials. Physical Review Letters, 100, Article ID: 030402.
http://dx.doi.org/10.1103/PhysRevLett.100.030402

[3]   Makris, K.G., El-Ganainy, R., Christodoulides, D.N. and Musslimani, Z.H. (2008) Beam Dynamics in PT Symmetric Optical Lattices. Physical Review Letters, 100, Article ID: 103904.
http://dx.doi.org/10.1103/PhysRevLett.100.103904

[4]   Lin, Z., Ramezani, H., Eichelkraut, T., Kottos, T., Cao, H. and Christodoulides, D.N. (2011) Unidirectional Invisibility Induced by PT-Symmetric Periodic Structures. Physical Review Letters, 106, Article ID: 213901.
http://dx.doi.org/10.1103/PhysRevLett.106.213901

[5]   Chong, Y.D., Ge, L. and Stone, A.D. (2011) PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems. Physical Review Letters, 106, Article ID: 093902.
http://dx.doi.org/10.1103/physrevlett.106.093902

[6]   Bender, C.M. (2007) Making Sense of Non-Hermitian Hamiltonians. Reports on Progress in Physics, 70, 947-1018.
http://dx.doi.org/10.1088/0034-4885/70/6/R03

[7]   Bender, C.M., Brody, D.C., Jones, H.F. and Meister, B.K. (2007) Faster than Hermitian Quantum Mechanics. Physical Review Letters, 98, Article ID: 040403.
http://dx.doi.org/10.1103/physrevlett.98.040403

[8]   Ghatak, A., Mandal, R.D.R. and Mandal, B.P. (2013) Various Scattering Properties of a New PT-Symmetric Non-Hermitian Potential. Annals of Physics, 336, 540-552.
http://dx.doi.org/10.1016/j.aop.2013.06.008

[9]   Miroshnichenko, A.E., Malomed, B.A. and Kivshar, Y.S. (2011) Nonlinearly-PT-Symmetric Systems: Spontaneous Symmetry Breaking and Transmission Resonances. Physical Review A, 84, 911-916.
http://dx.doi.org/10.1103/PhysRevA.84.012123

[10]   Christodoulides, D.N., Lederer, F. and Silberberg, Y. (2003) Review Article Discretizing Light Behaviour in Linear and Nonlinear Waveguide Lattices. Nature, 424, 817-823.
http://dx.doi.org/10.1038/nature01936

[11]   Ruter, C.E., Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Segev, M. and Kip, D. (2010) Observation of Parity-Time Symmetry in Optics. Nature Physics, 6, 192-195.
http://dx.doi.org/10.1038/nphys1515

[12]   El-Ganainy, R., Makris, K.G., Christodoulides, D.N. and Musslimani, Z.H. (2007) Theory of Coupled Optical PT-Symmetric Structures. Optics Letters, 32, 2632-2634.
http://dx.doi.org/10.1364/OL.32.002632

[13]   Dai, C.Q., Xu, Y.G. and Wang, Y. (2015) Nonautonomous Cnoidal Wave and Soliton Management in Parity-Time Symmetric Potentials. Communications in Nonlinear Science and Numerical Simulation, 20, 389-400.
http://dx.doi.org/10.1016/j.cnsns.2014.06.004

[14]   Khare, A., Al-Marzoug, S.M. and Bahlouli, H. (2012) Solitons in PT-Symmetric Potential with Competing Nonlinearity. Physics Letters A, 376, 2880-2886.
http://dx.doi.org/10.1016/j.physleta.2012.09.047

[15]   Dai, C.Q. and Wang, Y.Y. (2014) Nonautonomous Solitons in Parity-Time Symmetric Potentials. Optics Communications, 315, 303-309.
http://dx.doi.org/10.1016/j.optcom.2013.11.030

[16]   Bludov, Y.V., Konotop, V.V. and Malomed, B.A. (2013) Stable Dark Solitons in PT-Symmetric Dual-Core Waveguides. Physical Review A, 87, Article ID: 013816.
http://dx.doi.org/10.1103/PhysRevA.87.013816

[17]   Ablowitz, M.J. and Musslimani, Z.H. (2013) Integrable Nonlocal Nonlinear Schrodinger Equation. Physical Review Letters, 110, Article ID: 064105.
http://dx.doi.org/10.1103/PhysRevLett.110.064105

[18]   Li, M. and Xu, T. (2015) Dark and Antidark Soliton Interactions in the Nonlocal Nonlinear Schrodinger Equation with the Self-Induced Parity-Time-Symmetric Potential. Physical Review E, 91, Article ID: 033202.
http://dx.doi.org/10.1103/PhysRevE.91.033202

[19]   Matveev, V.B. and Salle, M. (1991) Darboux Transformations and Solitons. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-662-00922-2

[20]   Guo, B.L., Ling, L.M. and Liu, Q.P. (2012) Nonlinear Schrodinger Equation: Generalized Darboux Transformation and Rogue Wave Solutions. Physical Review E, 85, Article ID: 026607.
http://dx.doi.org/10.1103/PhysRevE.85.026607

[21]   Yang, B., Zhang, W.G., Zhang, H.Q. and Pei, S.B. (2013) Generalized Darboux Transformation and Rogue Wave Solutions for the Higher-Order Dispersive Nonlinear Schrodinger Equation. Physica Scripta, 88, Article ID: 065004.
http://dx.doi.org/10.1088/0031-8949/88/06/065004

 
 
Top