A New Parallel Algorithm for Simulation of Spin-Glass Systems on Scales of Space-Time Periods of an External Field

References

[1] [1] K. Binder and A. P. Young, “Spin glasses: Experimental facts, theoretical concepts and open Questions”, Reviews of Modern Physics, Vol. 58, No.4, 1986, pp. 801-976.

[2] M. Mézard, G. Parisi, M. A. Virasoro, “Spin Glass Theory and Beyond”, World Scientific, Vol. 9, 1987.

[3] A. P. Young (ed.), “Spin Glasses and Random Fields”, World Scientific, 1998.

[4] R. Fisch and A. B. Harris, “Spin-glass model in continuous dimensionality”, Physical Review Letters, Vol. 47, No. 8, 1981, p.620.

[5] C. Ancona-Torres, D. M. Silevitch, G. Aeppli, and T. F. Rosenbaum, “Quantum and Classical Glass Transitions in LiHoxY1-xF4”, Physical Review Letters, Vol. 101, No. 5, 2008, pp. 057201.1-057201.4.

[6] A. Bovier, “Statistical Mechanics of Disordered Systems: A Mathematical Perspective”,Cambridge Series in Statistical and Probabilistic Mathematics, No. 18, 2006, p 308.

[7] Y. Tu, J. Tersoff and G. Grinstein, “Properties of a Continuous-Random-Network Model for Amorphous Systems”, Physical Review Letters, Vol. 81, No. 22, 1998, pp. 4899-4902.

[8] K. V. R. Chary, G. Govil, “NMR in Biological Systems: From Molecules to Human “, Springer, Vol. 6, 2008, p. 511.

[9] E. Baake, M. Baake and H. Wagner, “Ising Quantum Chain is a Equivalent to a Model of Biological Evolution”, Physical Review Letters, Vol. 78, No. 3, 1997, pp. 559-562.

[10] D. Sherrington and S. Kirkpatrick, “A solvable model of a spin-glass “, Physical Review Letters, Vol. 35, No. 26, 1975, pp. 1792-1796.

[11] B. Derrida, “Random-energy model: An exactly solvable model of disordered systems”, Physical Review B, Vol. 24, No. 5, 1981, pp. 2613-2626.

[12] G. Parisi, “Infinite Number of Order Parameters for Spin-Glasses”, Physical Review Letters, Vol. 43, No. 23, 1979, pp. 1754-1756.

[13] A. J. Bray and M. A. Moore, “Replica-Symmetry Breaking in Spin-Glass Theories”, Physical Review Letters, Vol.41, No. 15, 1978, pp. 1068-1072.

[14] J. F. Fernandez and D. Sherrington, “Randomly located spins with oscillatory interactions”, Physical Review B, Vol. 18, No. 11, 1978, pp. 6270-6274.

[15] F. Benamira, J. P. Provost and G. J. Vallée, “Separable and non-separable spin glass models”, Journal de Physique, Vol. 46, No. 8, 1985, pp. 1269-1275.

[16] D. Grensing and R. Kühn, “On classical spin-glass models”, Journal de Physique, Vol. 48, No. 5, 1987, pp. 713-721.

[17] A. S. Gevorkyan et al., “New Mathematical Conception and Computation Algorithm for Study of Quantum 3D Disordered Spin System Under the Influence of External Field”, Transactions on computational science VII, 2010, pp. 132-153.

[18] S. F. Edwards and P. W. Anderson, “Theory of spin glasses”, Journal of Physics F, Vol. 5, 1975, pp. 965-974.

[19] A. S. Gevorkyan, H. G. Abajyan and H. S. Sukiasyan. ArXiv: cond-mat.dis-nn 1010.1623v1.

[20] I. Ibragimov and Yu. Linnik, “Independent and Stationary Sequences of Random Variebles”, Mathematical Reviews, Vol. 48, 1971, pp. 1287-1730.