JWARP  Vol.3 No.6 , June 2011
Comparison of Nine Membrane Pairs for Electrodialytic Removal of Nitrate Ions
ABSTRACT
Electrodialysis (ED) of NaNO3 solutions was performed to stress the role of the membrane pair as a unit i.e. the behavior as a whole of Anion Exchange Membrane (AEM) and Cation Exchange Membrane (CEM), in the process at room temperature. The membrane pair was also tested in the reclamation of nitric acid and sodium hydroxide. It was found that the membrane pair ranking in Limiting Current Density does not agree with that of ions leakage and both rankings are not the same as for Current Efficiency or Specific Power Consumption, each parameter for a specific membrane pair depends on the associated membrane and at a lesser degree on the flow rate. Results show that one cannot select a membrane or a membrane pair only by its limiting current density i.e. it is necessary to evaluate several parameters of the process by characterizing the whole membrane pair and to decide the parameter of interest, i.e. denitrification speed, ions leakage, proton back migration, current efficiency or specific power consumption.

Cite this paper
nullL. Ulises, A. René, O. German, T. Julieta and C. Federico, "Comparison of Nine Membrane Pairs for Electrodialytic Removal of Nitrate Ions," Journal of Water Resource and Protection, Vol. 3 No. 6, 2011, pp. 387-397. doi: 10.4236/jwarp.2011.36049.
References
[1]   M. I. M. Soares, “Biological Denitrification of Ground Water,” Water, Air, and Soil Pollution, Vol. 123, No. 1-4, 2000, pp. 183-193. doi:10.1023/A:1005242600186

[2]   C. D. Rocca, V. Belgiorno and S. Meric, “Overview of in-Situ Applicable Nitrate Removal Processes,” Desalination, Vol. 204, No. 1-3, 2007, pp. 46-62. doi:10.1016/j.desal.2006.04.023

[3]   C. Su and R.W. Puls, “Nitrate Reduction by Zerovalent Iron: Effects of Formate, Oxalate, Citrate, Chloride, Sulfate, Borate, and Phosphate,” Environmental Science and Technology, Vol. 38, No. 9, 2004, pp. 2715-2720. doi:10.1021/es034650p

[4]   A. Afkhami, T. Madrakian and Z. Karimi, “The Effect of Acid Treatment of Carbon Cloth on the Adsorption of Nitrite and Nitrate Ions,” Journal of Hazardous Materials, Vol. 144, No. 1-2, 2007, pp. 427-431. doi:10.1016/j.jhazmat.2006.10.062

[5]   C. J. Martin, E. O. Kartinen Jr. and J. Condon, “Examination of Processes for Multiple Contaminant Removal from Groundwater,” Desalination, Vol. 102, No. 1-3, 1995, pp. 35-45. doi:10.1016/0011-9164(95)00039-5

[6]   D. Clifford and X. Liu, “Ion Exchange for Nitrate Removal,” Journal of the American Water Works Association, Vol. 85, 1993, pp. 135-143.

[7]   J.-H. Ahn, K.-H. Choo and H.-S. Park, “Ion Exchange Membrane Treatment of Acidic Etchant Wastewater: Effect of Neutralization and Polyelectrolyte Coating on Nitrate Removal,” Journal of Membrane Science, Vol. 310, No. 1-2, 2008, pp. 296-302. doi:10.1016/j.memsci.2007.11.010

[8]   A. Elmidaoui, F. Elhannouni, M. A. MenkouchiSahli, L. Chay, H. Elabbassi, M. Hafsi and D. Largeteau, “Pollution of Nitrate in Moroccan Ground Water: Removal by Electrodialysis,” Desalination, Vol. 136, No. 1-3,2001,pp.325-332. doi:10.1016/S0011-9164(01)00195-3

[9]   F. Hell, J. Lahnsteiner, H. Frischherz and G. Baumgartner, “Experience with Full-Scale Electrodialysis for Nitrate and Hardness Removal,” Desalination, Vol. 117, No. 1-3, 1998, pp. 173-180. doi:10.1016/S0011-9164(98)00088-5

[10]   M. Amara and H. Kerdjoudj, “A Modified Anion-Exchange Membrane Applied to Purification of Effluent Containing Different Anions: Pre-Treatment before Desalination,” Desalination, Vol. 206, No. 1-3, 2007, pp. 205-209. doi:10.1016/j.desal.2006.02.067

[11]   B. Van der Bruggen, A. Koninckx and C. Vandecasteele, “Separation of Monovalent and Divalent Ions from Aqueous Solution by Electrodialysis and Nanofiltration,” Water Research, Vol. 38, No. 5, 2004, pp. 1347-1353. doi:10.1016/j.watres.2003.11.008

[12]   H. Wang and J. Qu, “Combined Bioelectrochemical and Sulfur Autotrophic Denitrification for Drinking Water Treatment,” Water Research, Vol. 37, No. 15, 2003, pp. 3767-3775. doi:10.1016/S0043-1354(03)00249-5

[13]   Y.-H. Kima, E.-D. Hwangb, W. S. Shinc, J.-H. Choic, T. W. Had and S. J. Choic “Treatments of Stainless Steel Wastewater Containing a High Concentration of Nitrate Using Reverse Osmosis and Nanomembranes,” Desalination. Vol. 202, No. 1-3, 2007, pp. 286-292. doi:10.1016/j.desal.2005.12.066

[14]   J. J. Schhoeman, A. Steyn and P. J. Scurr, “Treatment Using Reverse Osmosis of an Effluent from Stainless Steel Manufacture,” Water Research, Vol. 30, No. 9, 1996, pp. 1979-1984. doi:10.1016/0043-1354(96)00014-0

[15]   S. Choi and Z. Yun, “The Effect of Co-Existing Ions and Surface Characteristics of Nanomembranes on the Removal of Nitrate and Fluoride,” Desalination, Vol. 133, No. 1, 2001, pp. 53-64. doi:10.1016/S0011-9164(01)00082-0

[16]   C. J. Martin, E. O. Kartinen and J. Condon, “Examination of Processes for Multiple Contaminant Removal from Groundwater,” Desalination, Vol. 102, No. 1-3, 1995, pp. 35-45. doi:10.1016/0011-9164(95)00039-5

[17]   R. Molinari, P. Argurio and L. Romeo, “Studies on Interactions between Membranes (RO and NF) and Pollutants (SiO2, , and Humic Acid) in Water,” Desalination, Vol. 138, No. 1-3, 2001, pp. 271-281. doi:10.1016/S0011-9164(01)00273-9

[18]   E. Gain, S. Laborie, Ph. Viers, M. Rakib, G. Durand and D. Hartmann, “Ammonium Nitrate Wastewater Treatment by Coupled Membrane Electrolysis and Electrodialysis,” Journal of Applied Electrochemistry, Vol. 32, No. 9, 2002, pp. 969-975. doi:10.1023/A:1020908702406

[19]   E. Gain, S. Laborie, Ph. Viers, M. Rakib, D. Hartmann and G. Durand, “Ammonium Nitrate Wastewater Treatment by an Electromembrane Process,” Desalination, Vol. 149, No. 1-3, 2002, pp. 337-342. doi:10.1016/S0011-9164(02)00806-8

[20]   T. Sawa, Y. Hirose, Y. Ishii, A. Takatsudo, K. Wakasugi and H. Hayashi, “Development of Electrochemical Denitrification from Waste Water Containing Ammonium Nitrate, Radiactive Waste Management and Environmental Remediation,” The Association for the Study of Medical Education, 1995.

[21]   K. N. Mani, F. P. Chlanda and C. H. Byszewski, “Aquatech Membrane Technology for Recovery of Acid/Base Value for Salt Streams,” Desalination, Vol. 68, No. 2-3, 1988, pp. 149-166. doi:10.1016/0011-9164(88)80051-1

[22]   J. L. Gineste, G. Pourcelly, Y. Lorrain, F. Persin and C. Gavach, “Analysis of Factors Limiting the Use of Bipolar Membranes: A Simplified Model to Determine Trends,” Journal of Membrane Science, Vol. 112, No. 2, 1996, pp. 199-208. doi:10.1016/0376-7388(95)00284-7

[23]   K. N. Mani, “Electrodialysis Water Splitting Technology,” Journal of Membrane Science, Vol. 58, No. 2,1991,pp.117-138. doi:10.1016/S0376-7388(00)82450-3

[24]   Y. C. Chiao, F. P. Chlanda and K. N. Mani, “Bipolar Membranes for Purification of Acids and Bases,” J. Membr. Sc. Vol. 61, 1991, pp. 239-252. doi:10.1016/0376-7388(91)80018-2

[25]   T. S. Sorensen, “Interfacial Electrodynamics of Membranes and Polymer Films, in Surface Chemistry and Electrochemistry of Membranes,” CRC Press, New York, 1999.

[26]   P. Dlugolecki, B. Anet, S. J. Metz, K. Nijmeijer and M. Wessling, “Transport Limitations in Ion Exchange Membranes at Low Salt Concentrations,” Journal of Membrane Science, Vol. 346, No. 1, 2010, pp. 163-171. doi:10.1016/j.memsci.2009.09.033

[27]   K. Hattenbach and K. Kneifel, “Determination of Transport Properties and Limiting Current Densities of Ion Exchange Membrane Stacks,” Desalination, Vol. 21, No. 3, 1977, pp. 317-326. doi:10.1016/S0011-9164(00)88249-1

[28]   U. López-García, R. Anta?o-López, G. Orozco, T. Chapman and F. Castaneda, “Characterization of Electrodialysis Membranes by Electrochemical Impedance Spectroscopy at Low Polarization and by Raman Spectroscopy,” Separation and Purification Technology, Vol. 68, No. 3, 2009, pp. 375-381. doi:10.1016/j.seppur.2009.06.012

[29]   U, López-García, “Nitrate Removal by Electrodialysis,” Thesis of master degree in Electrochemistry, CIDETEQ, México, 2005.

[30]   J. L. Gineste, G. Pourcelly, Y. Lorrain, F. Persin and C. Gavach, “Analysis of Factors Limiting the Use of Bipolar Membranes: A Simplified Model to Determine Trends,” Journal of Membrane Science, Vol. 112, No. 2, 1996, pp. 199-208. doi:10.1016/0376-7388(95)00284-7

[31]   J. S. Jaime-Ferrer, E. Couallier, Ph. Viers, G. Durand and M. Rakib, “Three-Compartment Bipolar Membrane Electrodialysis for Splitting of Sodium Formate into Formic Acid and Sodium Hydroxide: Role of Diffusion of Molecular Acid,” Journal of Membrane Science, Vol. 325, No. 2, 2008, pp. 528-536. doi:10.1016/j.memsci.2008.07.059

[32]   J. S. Jaime Ferrer, S. Laborie, G. Durand and M. Rakib, “FormicAcid Regeneration by Electromembrane Processes,” Journal of Membrane Science, Vol. 280, No. 1-2, 2006,pp.509-516. doi:10.1016/j.memsci.2006.02.012

[33]   M. Amara and H. Kerdjoudj, “A Modified Anion-Exchange Membrane Applied to Purification of Effluent Containing Different Anions: Pre-Treatment before Desalination,” Desalination, Vol. 206, No. 1-3, 2007, pp. 205-209. doi:10.1016/j.desal.2006.02.067

[34]   M. A. Ben Ali, M. Rakib, S. Laborie, Ph. Viers and G. Durand, “Coupling of Bipolar Membrane Electrodialysis and Ammonia Stripping for Direct Treatment of Wastewaters Containing Ammonium Nitrate,” Journal of Membrane Science, Vol. 244, No. 1-2, 2004, pp. 89-96. doi:10.1016/j.memsci.2004.07.007

 
 
Top