A Simple Proof of Gustafsson’s Conjecture in Case of Poisson Equation on Rectangular Domains

Show more

References

[1] Dupont, T., Kendall, R. and Rachford, H. (1968) An Approximate Factorization Procedure for Solving Self-Adjoint Elliptic Difference Equations. SIAM Journal on Numerical Analysis, 5, 559-573.

http://dx.doi.org/10.1137/0705045

[2] Gustafsson, I. (1978) A Class of First Order Factorization Methods. BIT Numerical Mathematics, 18, 142-156.

http://dx.doi.org/10.1007/BF01931691

[3] Greenbaum, A. (1997) Iterative Methods for Solving Linear Systems. SIAM, Philadelphia.

http://dx.doi.org/10.1137/1.9781611970937

[4] Greenbaum, A. and Rodrigue, G.H. (1989) Optimal Preconditioners of a Given Sparsity Pattern. BIT Numerical Mathematics, 29, 610-634.

http://dx.doi.org/10.1007/BF01932737

[5] Axelsson, O. (1972) A Generalized SSOR Method. BIT Numerical Mathematics, 13, 443-467.

http://dx.doi.org/10.1007/BF01932955

[6] Axelsson, O. (1994) Iterative Solution Methods. Cambridge University Press, Cambridge.

[7] Chan, T.F. and van der Vorst, H.A. (1997) Approximate and Incomplete Factorizations. In: Keyes, D.E., Sameh, A. and Venkatakrishnan, V., Eds., Parallel Numerical Algorithms, ICASE/LaRC Interdisciplinary Series in Science and Engineering, 4, Kluwer Academic, Dordrecht, 167-202.

[8] Hackbusch, W. (1994) Iterative Solution of Large Sparse Linear Systems of Equations. Applied Math. Sci. Series, No 95, Springer-Verlag, New York.

http://dx.doi.org/10.1007/978-1-4612-4288-8

[9] Notay, Y. (1992) Upper Eigenvalue Bounds and Related Modified Incomplete Factorization Strategies. In: Beauwens, R. and de Groen, P., Eds., Iterative Methods in Linear Algebra, Amsterdam, North-Holland, 551-562.

[10] Bruaset, A.M. and Tveito, A. (1992) RILU Preconditioning; A Computational Study. Journal of Computational and Applied Mathematics, 39, 259-275.

http://dx.doi.org/10.1016/0377-0427(92)90203-A

[11] Gustafsson, I. (1979) Stability and Rate of Convergence of Modified Incomplete Cholesky Factorization Method. Research Report 79.02R, Department of Computer Sciences, Chalmers University of Technology and University of Göteborg, Göteborg, Sweden.

[12] Beauwens, R. (1984) Upper Eigenvalue Bounds for Pencils of Matrices. Linear Algebra and Its Applications, 62, 87-104.

http://dx.doi.org/10.1016/0024-3795(84)90088-0

[13] Beauwens, R. (1985) On Axelsson’s Perturbations. Linear Algebra and Its Applications, 68, 221-242.

http://dx.doi.org/10.1016/0024-3795(85)90214-9

[14] Notay, Y. (1991) Conditioning Analysis of Modified Block Incomplete Factorizations. Linear Algebra and Its Applications, 154-156, 711-722.

http://dx.doi.org/10.1016/0024-3795(91)90400-Q

[15] Axelsson, O. and Eijkhout, V. (1987) Robust Vectorizable Preconditioners for Three-Dimensional Elliptic Difference Equations with Anisotropy. In: te Riele, H.J.J., Dekker, Th.J. and van der Vorst, H.A., Eds., Algorithm and Applications on Vector and Parallel Computers, North-Holland Publishing Co., Amsterdam, 279-306.

[16] Axelsson, O. (1989) On the Eigenvalue Distribution of Relaxed Incomplete Factorization Methods and the Rate of Convergence of Conjugate Gradient Methods. Technical Report, Department of Mathematics, Catholic University, Nijmegen, The Netherland.

[17] Beauwens, R., Notay, Y. and Tombuyses, B. (1994) S/P images of Upper Triangular M-Matrices. Numerical Linear Algebra with Applications, 1, 19-31.

http://dx.doi.org/10.1002/nla.1680010104

[18] Notay, Y. (1991) Conditioning of Stieltjes Matrices by S/P Consistently Ordered Approximate Factorizations. Applied Numerical Mathematics, 10, 381-396.

http://dx.doi.org/10.1016/0168-9274(92)90058-L

[19] Min, C. and Gibou, F. (2012) On the Performance of a Simple Parallel Implementation of the ILU-PCG for the Poisson Equation on Irregular Domains. Journal of Computational Physics, 231, 4531-4536.

http://dx.doi.org/10.1016/j.jcp.2012.02.023