[1] Agrawal, O.P. (2002) Formulation of Euler-Lagrange Equations for Fractional Variational Problems. Journal of Mathematical Analysis and Application, 272, 368-379.
http://dx.doi.org/10.1016/S0022-247X(02)00180-4
[2] Agrawal, O.P. (2008) A General Finite Element Formulation for Fractional Variational Problems. Journal of Mathematical Analysis and Application, 337, 1-12.
http://dx.doi.org/10.1016/j.jmaa.2007.03.105
[3] Dehghan, M. and Tatari, M. (2006) The Use of Adomian Decomposition Method for Solving Problems in Calculus of Variations. Mathematical Problems in Engineering, 2006, 12 p.
http://dx.doi.org/10.1155/MPE/2006/65379
[4] Elsgolts, L. (1977) Differential Equations and the Calculus of Variations. Translated from the Russian by G. Yankovsky, Mir, Moscow.
[5] Agrawal, O.P. (2001) A New Lagrangian and a New Lagrange Equation of Motion for Fractionally Damped Systems. Journal of Applied Mechanics, 68, 339-341.
http://dx.doi.org/10.1115/1.1352017
[6] Lotfi, A. and Yousefi, S.A. (2013) A Numerical Technique for Solving a Class of Fractional Variational Problems. Journal of Computational and Applied Mathematics, 237, 633-643.
http://dx.doi.org/10.1016/j.cam.2012.08.005
[7] Atanackovic, T.M., Konjik, S., Pilipovi , S. and Simic, S. (2009) Variational Problems with Fractional Derivatives: Invariance Conditions and Nöther’s Theorem. Nonlinear Analysis: Theory, Methods & Applications, 71, 1504-1517.
http://dx.doi.org/10.1016/j.na.2008.12.043
[8] Gelfand, I.M. and Fomin, S.V. (1963) Calculus of Variations. Revised English Edition Translated and Edited by R. A. Silverman, Prentice-Hall, New Jersey.
[9] Doha, E.H., Bhrawy, A.H. and Ezz-Eldien, S.S. (2011) Efficient Chebyshev Spectral Methods for Solving Multi-Term Fractional Orders Differential Equations. Applied Mathematical Modelling, 35, 5662-5672.
http://dx.doi.org/10.1016/j.apm.2011.05.011
[10] Doha, E.H., Bhrawy, A.H. and Ezz-Eldien, S.S. (2015) An Efficient Legendre Spectral Tau Matrix Formulation for Solving Fractional Sub-Diffusion and Reaction Sub-Diffusion Equations. Journal of Computational and Nonlinear Dynamics, 10, Article ID: 021019.
http://dx.doi.org/10.1115/1.4027944
[11] Bhrawy, A.H., Doha, E.H., Ezz-Eldien, S.S. and Abdelkawy, M.A. (2015) A Numerical Technique Based on the Shifted Legendre Polynomials for Solving the Time-Fractional Coupled KdV Equation. Calcolo, in press.
http://dx.doi.org/10.1007/s10092-014-0132-x
[12] Bhrawy, A.H. and Abdelkawy, M.A. (2015) A Fully Spectral Collocation Approximation for Multi-Dimensional Fractional Schrödinger Equations. Journal of Computational Physics, 294, 462-483.
http://dx.doi.org/10.1016/j.jcp.2015.03.063
[13] Bhrawy, A.H. and Zaky, M.A. (2015) A Method Based on the Jacobi Tau Approximation for Solving Multi-Term Time-Space Fractional Partial Differential Equations. Journal of Comptuational Physics, 281, 876-895.
http://dx.doi.org/10.1016/j.jcp.2014.10.060
[14] Bell, W.W. (1968) Special Functions for Scientists and Engineers. Butler and Tanner Ltd., Frome.
[15] Khader, M.M. (2011) On the Numerical Solutions for the Fractional Diffusion Equation. Communications in Nonlinear Science and Numerical Simulation, 16, 2535-2542.
http://dx.doi.org/10.1016/j.cnsns.2010.09.007
[16] Bhrawy, A.H., Doha, E.H., Tenreiro Machado, J.A. and Ezz-Eldien, S.S. (2015) An Efficient Numerical Scheme for Solving Multi-Dimensional Fractional Optimal Control Problems with a Quadratic Performance Index. Asian Journal of Control, in press.
http://dx.doi.org/10.1002/asjc.1109
[17] Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S. and Abdelkawy, M.A. (2015) An Accurate Numerical Technique for Solving Fractional Optimal Control Problems. Proceedings of the Romanian Academy Series A, 16, 47-54.
[18] Khader, M.M. and Hendy, A.S. (2012) The Approximate and Exact Solutions of the Fractional-Order Delay Differential Equations Using Legendre Pseudo-Spectral Method. International Journal of Pure and Applied Mathematics, 74, 287-297.
[19] Li, C.P., Zeng, F.H. and Liu, F.W. (2012) Spectral Approximations to the Fractional Integral and Derivative. Fractional Calculus and Applied Analysis, 15, 383-406.
http://dx.doi.org/10.2478/s13540-012-0028-x
[20] Khader, M.M. (2013) Numerical Treatment for Solving the Perturbed Fractional PDEs Using Hybrid Techniques. Journal of Computational Physics, 250, 565-573.
http://dx.doi.org/10.1016/j.jcp.2013.05.032
[21] Funaro, D. (1992) Polynomial Approximation of Differential Equations. Springer Verlag, New York.
[22] Khader, M.M. (2013) Numerical Treatment for Solving Fractional Riccati Differential Equation. Journal of the Egyptian Mathematical Society, 21, 32-37.
http://dx.doi.org/10.1016/j.joems.2012.09.005
[23] Khader, M.M. (2014) On the Numerical Solution and Convergence Study for System of Non-Linear Fractional Diffusion Equations. Canadian Journal of Physics, 92, 1658-1666.
http://dx.doi.org/10.1139/cjp-2013-0464
[24] Khader, M.M., Sweilam, N.H. and Mahdy, A.M.S. (2013) Numerical Study for the Fractional Differential Equations Generated by Optimization Problem Using Chebyshev Collocation Method and FDM. Applied Mathematics and Information Science, 7, 2011-2018.
http://dx.doi.org/10.12785/amis/070541
[25] Khader, M.M., El Danaf, T.S. and Hendy, A.S. (2013) A Computational Matrix Method for Solving Systems of High Order Fractional Differential Equations. Applied Mathematical Modelling, 37, 4035-4050.
http://dx.doi.org/10.1016/j.apm.2012.08.009
[26] Sweilam, N.H. and Khader, M.M. (2010) A Chebyshev Pseudo-Spectral Method for Solving Fractional Order Integro-Differential Equations. ANZIAM Journal, 51, 464-475.
http://dx.doi.org/10.1017/S1446181110000830
[27] Sweilam, N.H., Khader, M.M. and Mahdy, A.M.S. (2012) Numerical Studies for Fractional-Order Logistic Differential Equation with Two Different Delays. Journal of Applied Mathematics, 2012, Article ID: 764894.
[28] Podlubny, I. (1999) Fractional Differential Equations. Academic Press, New York.
[29] Miller, K.S. and Ross, B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wily and Sons Inc., New York.