[1] Cahill, D.R. and Marks Jr, S.C. (1980) Tooth eruption: evidence for the central role of the dental follicle. Journal of Oral Pathology, 9, 189-200. doi:10.1111/j.1600-0714.1980.tb00377.x
[2] Marks Jr, S.C. and Cahill, D.R. (1984) Experimental study in the dog of the non-active role of the tooth in the eruptive process. Archives of Oral Biology, 29, 311-322. doi:10.1016/0003-9969(84)90105-5
[3] Wise, G.E. and King, G.J. (2008) Mechanisms of tooth eruption and orthodontic tooth movement. Journal of Dental Research, 87, 414-434. doi:10.1177/154405910808700509
[4] Wise, G.E. (2009) Cellular and molecular basis of tooth eruption. Orthodontics and Craniofacial Research, 12, 67-73. doi:10.1111/j.1601-6343.2009.01439.x
[5] Yao, S., Pan, F., Prpic, V., et al. (2008) Differentiation of stem cells in the dental follicle. Journal of Dental Research, 87, 767-771. doi:10.1177/154405910808700801
[6] Bianco, P. and Gehron Robey, P. (2000) Marrow stromal stem cells. Journal of Clinical Investigation, 105, 1663- 1668. doi:10.1172/JCI10413
[7] Gronthos, S., Mankani, M., Brahim, J., et al. (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proceedings of the National Academy of Sciences, 97, 13625-13630. doi:10.1073/pnas.240309797
[8] Miura, M., Gronthos, S., Zhao, M., et al. (2003) SHED: Stem cells from human exfoliated deciduous teeth. Proceedings of the National Academy of Sciences, 100, 5807-5812. doi:10.1073/pnas.0937635100
[9] ennon, D.P., Edmison, J.M. and Capalan, A.I. (2001) Cultiva-tion of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondro-genesis. Journal of Cell Physiology, 187, 345-355. doi:10.1002/jcp.1081
[10] Yoshida, Y., Takahashi, K., Okita, K. et al. (2009) Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell, 5, 237-241. doi:10.1016/j.stem.2009.08.001
[11] Wise, G.E., Lin, F. and Fan, W. (1992) Culture and characteri-zation of dental follicle cells from rat molars. Cell Tissue Re-search, 267, 483-492.
[13] O'Connor, M.D., Kardel, M.D., Iosfina, I., et al. (2008) Alkaline phosphatase-positive colony formation is a sensitive,specific, and quantitative indicator of undifferentiated human embryonic stem cells. Stem Cells, 26, 1109- 1116. doi:10.1634/stemcells.2007-0801
[14] Yu, J., Vodyanik, M.A., Smuga-Otto, K., et al. (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science, 318, 1917-1920. doi:10.1126/science.1151526
[15] Aasen, T., Raya, A., Barrero, M.J., et al. (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 26, 1276-1284. doi:10.1038/nbt.1503
[16] Yin, A.H., Miraglia, S., Zanjani, E.D., et al. (1997) AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood, 90, 5002-5012.
[17] Mizrak, D., Brittan, M. and Alison, M.R. (2008) CD133: mo-lecule of the moment. Journal of Pathology, 214, 3-9. doi:10.1002/path.2283
[18] Uchida, N., Buck, D.W., He, D., et al. (2000) Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences, 97, 14720-14725. doi:10.1073/pnas.97.26.14720
[19] Lee, A., Kessler, J.D., Read, T.A., et al. (2005) Isolation of neural stem cells from the postnatal cerebellum. Nature Neuroscience, 8, 723-729. doi:10.1038/nn1473
[20] Corti, S., Nizzardo, M., Nardini, M., et al. (2007) Isolation and characterization of murine neural stem/progenitor cells based on Prominin-1 expression. Experimental Neurology, 205, 547-562. doi:10.1016/j.expneurol.2007.03.021
[21] Chen, C.H., Dixon, R.A., Ke, L.Y., et al. (2009) Vascular pro-genitor cells in diabetes mellitus: roles of WNT signaling and negatively charged low-density lipoprotein. Circulation Research, 104, 1038-1040. doi:10.1161/CIRCRESAHA.109.198051
[22] Barry, F., Boynton, R., Murphy, M., et al. (2001) The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochemical and Biophysical Research Communications. 289, 519-524. doi:10.1006/bbrc.2001.6013
[23] Synnestvedt, K., Furuta, G.T., Comerford, K.M., et al. (2002) Ecto-5'-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. Journal of Clinical Investigation, 110, 993-1002.
[24] Ledoux, S., Runembert, I., Koumanov, K., et al. (2003) Hypoxia enhances Ecto-5'-Nucleotidase activity and cell surface expression in endothelial cells: role of membrane lipids. Circulation Research, 92, 848-855.doi:10.1161/01.RES.0000069022.95401.FE
[25] Friedman, G.B., Taylor, C.T., Parkos, C.A., et al. (1998) Epi-thelial permeability induced by neutrophil transmigration is potentiated by hypoxia: role of intracellular cAMP. Journal of Cell Physiology, 176, 76-84. doi:10.1002/(SICI)1097-4652(199807)176:1<76::AID-JCP9>3.0.CO;2-5
[26] uft, F.C. (2001) Lactic acidosis update for critical care clinicians. Journal of the American Society of Nephrology, 12, S15-19.
[27] Ye, J., Gao, Z., Yin, J., et al. (2007) Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. American Journal of Physiology—Endocrinology and Metabolism, 293, E1118-1128. doi:10.1152/ajpendo.00435.2007
[28] Gonzalez, N.C. and Wood, J.G. (2010) Alveolar hypoxia- in-duced systemic inflammation: what low PO(2) does and does not do. Advances in Experimental Medicine and Biology, 662, 27-32. doi:10.1007/978-1-4419-1241-1_3