[1] Smith, I.O., Liu, X.H., Smith, L.A. and Maet, P. (2009) Nanostructured polymer scaffolds for tissue engineering and regenerative medicine. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 1, 226- 236. doi:10.1002/wnan.26
[2] Karageorgiou, V. and Kaplan, D. (2005) Porosity of 3D biornaterial scaffolds and osteogenesis. Biomaterials, 26, 5474-5491. doi:10.1016/j.biomaterials.2005.02.002
[3] Baji, A., Wong, S., Srivatsan, T., Njus, G. and Mathur, G. (2006) Processing methodologies for polycaprolactone- hydroxyapatite composites: a review. Materials and Ma- nufacturing Processes, 21, 211-218. doi:10.1081/AMP-200068681
[4] Sopyan, I., Ramesh, I. and Khalidet, K. (2007) Porous hydroxyapatite for artificial bone applications. Science and Technology of Advanced Materials, 8, 116-123. doi:10.1016/j.stam.2006.11.017
[5] Angel, M.J., Sgaglione, N. and Grande, D. (2006) Clinical applications of bioactive factors in sports medicine - current concepts and future trends. Sports Medicine and Arthroscopy Review, 14, 138-145. doi:10.1097/00132585-200609000-00005
[6] Golebiewski, J., Gibas, E. and Malinowski, R. (2008) Selected biodegradable polymers - preparation, properties, applications. Polimery, 53, 799-807.
[7] Shung, A.K., Timmer, M., Seongbong, J., Engel, P. and Mikos, A. (2002) Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. Journal of Biomaterials Science-Polymer Edition, 13, 95-108. doi:10.1163/156856202753525963
[8] Wang, S.F., Kempen, D., Simha N., Lewis J., Windebank A., Yaszemski, M. and Lu, L. (2008) Photo-cross-linked hybrid polymer networks consisting of poly (propylene fumarate) and poly (caprolactone fumarate): controlled physical properties and regulated bone and nerve cell responses. Biomacromolecules, 9, 1229-1241. doi:10.1021/bm7012313
[9] Pretsh, E., Buhlmann, P. and Affolter, C. (2000) Structure determination of organic compounds. 3rd Edition, Springer, Heidelberg, 421.