[1] Kobayashi, Y. (2003) The Nociceptive and Anti-Nociceptive Effects of Evodiamine from Fruits of Evodia rutaecarpa in Mice. Planta Medica, 69, 425-428.
http://dx.doi.org/10.1055/s-2003-39701
[2] Moon, T.C., Murakami, M., Kudo, I., et al. (1999) A New Class of COX-2 Inhibitor, Rutaecarpine from Evodia rutaecarpa. Inflammation Research, 48, 621-625.
http://dx.doi.org/10.1007/s000110050512
[3] Peng, J. and Li, Y.J. (2010) The Vanilloid Receptor TRPV1: Role in Cardiovascular and Gastrointestinal Protection. European Journal of Pharmacology, 627, 1-7.
http://dx.doi.org/10.1016/j.ejphar.2009.10.053
[4] Wu, C.L., Hung, C.R., Chang, F.Y., et al. (2002) Effects of Evodiamine on Gastrointestinal Motility in Male Rats. European Journal of Pharmacology, 457, 169-176.
http://dx.doi.org/10.1016/S0014-2999(02)02687-0
[5] Huang, X., Li, W. and Yang, X.W. (2012) New Cytotoxic Quinolone Alkaloids from Fruits of Evodia rutaecarpa. Fitoterapia, 83, 709-714.
http://dx.doi.org/10.1016/j.fitote.2012.02.009
[6] Kima, D., Lee, Y.H., Park, S.H., et al. (2014) Subchronic Oral Toxicity of Evodia Fruit Powder in Rats. Journal of Ethnopharmacology, 151, 1072-1078.
http://dx.doi.org/10.1016/j.jep.2013.12.006
[7] Hall, D., Ptacek, J. and Snyder, M. (2007) Protein Microarray Technology. Mechanisms of Ageing and Development, 128, 161-167.
http://dx.doi.org/10.1016/j.mad.2006.11.021
[8] Morris, M.K., Chi, A., Melas, I.N., et al. (2013) Phosphoproteomics in Drug Discovery. Drug Discovery Today, 19, 425-432.
[9] Breitling, F., Nesterov, A., Stadler, V., et al. (2009) High-Density Peptide Arrays. Molecular BioSystems, 5, 224-234. http://dx.doi.org/10.1039/b819850k
[10] Pierobon, M., VanMeter, A., Moroni, N., et al. (2012) Reverse-Phase Protein Microarrays. Methods in Molecular Biology, 823, 215-235.
http://dx.doi.org/10.1007/978-1-60327-216-2_14
[11] Wildt, R.M., Mundy, C.R., Gorick, B.D. and Tomlinson, I.M. (2000) Antibody Arrays for High-Throughput Screening of Antibody-Antigen Interactions. Nature Biotechnology, 18, 989-994.
http://dx.doi.org/10.1038/79494
[12] Cho, Y.E., Singh, T.S., Lee, H.C., Moon, P.G., Lee, J.E., Lee, M.H., et al. (2012) In-Depth Identification of Pathways Related to Cisplatin-Induced Hepatotoxicity through an Integrative Method Based on an Informatics-Assisted Label-Free Protein Quantitation and Microarray Gene Expression Approach. Molecular & Cellular Proteomics, 11, Article ID: M111.010884.
[13] Cho, Y.E., Moon, P.G., Lee, J.E., Singh, T.S.K., Kang, W., Lee, H.-C., et al. (2013) Integrative Analysis of Proteomic and Transcriptomic Data for Iden-tification of Pathways Related to Simvastatin-Induced Hepatotoxicity. Proteomics, 13, 1257-1275.
http://dx.doi.org/10.1002/pmic.201200368
[14] Hu, Z.Y., Lausted, C., Yoo, H., Yan, X.W., Brightman, A., Chen, J.K., et al. (2014) Quantitative Liver-Specific Protein Fingerprint in Blood: A Signature for Hepatotoxicity. Theranostics, 4, 215-228.
http://dx.doi.org/10.7150/thno.7868
[15] Bancerek, J., Poss, Z.C., Steinparzer, I., Sedlyarov, V., Pfaffenwimmer, T., Mikulic, I., et al. (2013) CDK8 Kinase Phosphorylates Transcription Factor STAT1 to Selectively Regulate the Interferon Response. Immunity, 38, 250-262.
http://dx.doi.org/10.1016/j.immuni.2012.10.017
[16] Gustafson, B. and Smith, U. (2006) Cytokines Promote Wnt Signaling and Inflammation and Impair the Normal Differentiation and Lipid Accumulation in 3T3-L1 Preadipocytes. The Journal of Biological Chemistry, 281, 9507-9516.
http://dx.doi.org/10.1074/jbc.M512077200
[17] Hayashi, R., Yamashita, N., Matsui, S., Fujita, T., Araya, J., Sassa, K., et al. (2000) Bradykinin Stimulates IL-6 and IL-8 Production by Human Lung Fibroblasts through ERK- and p38 MAPK-Dependent Mechanisms. European Respiratory Journal, 16, 452-458.
http://dx.doi.org/10.1034/j.1399-3003.2000.016003452.x
[18] Jiang, J.L. and Hu, C.P. (2009) Evodiamine: A Novel Anti-Cancer Alkaloid from Evodia rutaecarpa. Molecules, 14, 1852-1859.
http://dx.doi.org/10.3390/molecules14051852
[19] Kobayashi, Y., Nakano, Y., Kizaki, M., Hoshikuma, K., Yokoo, Y. and Kamiya, T. (2001) Capsaicin-Like Anti-Obese Activities of Evodiamine from Fruits of Evodia rutaecarpa, a Vanilloid Receptor Agonist. Planta Medica, 67, 628-633.
http://dx.doi.org/10.1055/s-2001-17353
[20] Wang, T., Wang, Y.X., Kontani, Y., Kobayashi, Y., Sato, Y., Mori, N. and Yamashita, H. (2008) Evodiamine Improves Diet-Induced Obesity in a Uncoupling Protein-1-Independent Manner: Involvement of Antiadipogenic Mechanism and Extracellularly Regulated Kinase/Mitogen-Activated Protein Kinase Signaling. Endocrinology, 149, 358-366.
http://dx.doi.org/10.1210/en.2007-0467
[21] Zhang, T., Qu, S., Shi, Q., He, D.L. and Jin, X.B. (2014) Evodiamine Induces Apoptosis and Enhances TRAIL-Induced Apoptosis in Human Bladder Cancer Cells through mTOR/S6K1-Mediated Downregulation of Mcl-1. International Journal of Molecular Sciences, 15, 3154-3171.
http://dx.doi.org/10.3390/ijms15023154
[22] Wang, T., Wang, Y.X. and Yamashita, H. (2009) Evodiamine Inhibits Adipogenesis via the EGFR-PKCα-ERK Signaling Pathway. FEBS Letters, 583, 3655-3659.
http://dx.doi.org/10.1016/j.febslet.2009.10.046
[23] Liao, J.F., Chiou, W.F., Shen, Y.C., Wang, G.-J. and Chen, C.-F. (2011) Anti-Inflammatory and Anti-Infectious Effects of Evodia rutaecarpa (Wuzhuyu) and Its Major Bioactive Components. Chinese Medicine, 6, 6-15.
http://dx.doi.org/10.1186/1749-8546-6-6
[24] Kong, Y.C., Hu, S.Y., Lau, F.K., Che, C.T., Yueng, H.W., Cheung, S. and Hwang, J.C.C. (1976) Potential Anti-Fertility Plants from Chinese Medicine. The American Journal of Chinese Medicine, 4, 105-128.
http://dx.doi.org/10.1142/S0192415X76000160
[25] King, C.L., Kong, Y.C., Wong, N.S., Yeung, H.W., Fong, H.H.S. and Sankawa, U. (1980) Uterotonic Effect of Evodia rutaecarpa Alkaloids. Journal of Natural Products, 43, 577-582.
http://dx.doi.org/10.1021/np50011a008
[26] Sheu, J.R., Hung, W.C., Wu, C.H., Lee, Y.M. and Yen, M.H. (2000) Antithrombotic Effect of Rutaecarpine, an Alkaloid Isolated from Evodia rutaecarpa, on Platelet Plug Formation in in Vivo Experiments. British Journal of Haematology, 110, 110-115.
http://dx.doi.org/10.1046/j.1365-2141.2000.01953.x
[27] Zhu, L.I., Yang, D.X., Liu, X., Jia, F.-L., Ruan, M. and Zhang, B.-X. (2013) Hepatic Toxicity Study on the Fruit of Evodia rutaecarpa (Juss.) Benth. Lishizhen Medicine and Material Medical Research, 24, 1810-1813.
[28] Chou, C.C., Pan, S.L., Teng, C.M. and Guh, J.H. (2003) Pharmacological Evaluation of Several Major Ingredients of Chinese Herbal Medicines in Human Hepatoma Hep3B Cells. European Journal of Pharmaceutical Sciences, 19, 403-412.
http://dx.doi.org/10.1016/S0928-0987(03)00144-1
[29] LoPiccolo, J., Blumenthal, G., Bernstein, W. and Dennis, P. (2008) Targeting the PI3K/Akt/mTOR Pathway: Effective Combinations and Clinical Considerations. Drug Resistance Updates, 11, 32-50.
http://dx.doi.org/10.1016/j.drup.2007.11.003
[30] Yuana, L.Y. and Kaplowitz, N. (2009) Glutathione in Liver Diseases and Hepatotoxicity. Molecular Aspects of Medicine, 30, 29-41.
http://dx.doi.org/10.1016/j.mam.2008.08.003
[31] Yoon, J.Y., Jeong, H.Y., Kim, S.H., Kim, H.G., Nam, G., Kim, J.P., et al. (2013) Methanol Extract of Evodia lepta Displays Syk/Src-Targeted Anti-Inflammatory Activity. Journal of Ethnopharmacology, 148, 999-1007.
http://dx.doi.org/10.1016/j.jep.2013.05.030
[32] Cubero, F.J. and Nieto, N. (2012) Arachidonic acid Stimulates TNFα Production in Kupffer Cells via a Reactive Oxygen Species-pERK1/2-Egr1-Dependent Mechanism. AJP: Gastrointestinal and Liver Physiology, 303, G228-G239.
http://dx.doi.org/10.1152/ajpgi.00465.2011
[33] Shi, H.L., Wu, X.J., Liu, Y. and Xie, J.Q. (2013) Berberine Counteracts Enhanced IL-8 Expression of AGS Cells Induced by Evodiamine. Life Sciences, 93, 830-839.
http://dx.doi.org/10.1016/j.lfs.2013.09.010
[34] Du, J., Wang, X.F., Zhou, Q.M., Zhang, T.L., Lu, Y.Y., Zhang, H. and Su, S.B. (2013) Evodiamine Induces Apoptosis and Inhibits Metastasis in MDA-MB-231 Human Breast Cancer Cells in Vitro and in Vivo. Oncology Reports, 30, 685-694.
[35] Behari, J. (2010) The Wnt/β-Catenin Signaling Pathway in Liver Biology and Disease. Expert Review of Gastroenterology & Hepatology, 4, 745-756.
http://dx.doi.org/10.1586/egh.10.74
[36] Lade, A.G. and Monga, S.P. (2011) Beta-Catenin Signaling in Hepatic Development and Progenitors: Which Way Does the WNT Blow? Developmental Dynamics, 240, 486-500.
http://dx.doi.org/10.1002/dvdy.22522
[37] Firestein, R., Bass, A.J., Kim, S.Y., Dunn, I.F., Silver, S.J., Guney, I., et al. (2008) CDK8 Is a Colorectal Cancer Oncogene That Regulates β-Catenin Activity. Nature, 455, 547-551.
http://dx.doi.org/10.1038/nature07179
[38] Firestein, R. and Hahn, W.C. (2009) Revving the Throttle on an Oncogene: CDK8 Takes the Driver Seat. Cancer Research, 69, 7899-7901.
http://dx.doi.org/10.1158/0008-5472.CAN-09-1704
[39] Morris, E., Ji, J.Y., Yang, F., Di Stefano, L., Herr, A., Moon, N.S., et al. (2008) E2F1 Represses β-Catenin Transcription and Is Antagonized by both pRB and CDK8. Nature, 455, 552-556.
http://dx.doi.org/10.1038/nature07310
[40] Kim, S.Y., Dunn, I.F., Firestein, R., Gupta, P., Wardwell, L., Repich, K., et al. (2010) CK1ε Is Required for Breast Cancers Dependent on β-Catenin Activity. PLoS ONE, 5, e8979.
http://dx.doi.org/10.1371/journal.pone.0008979
[41] Bibiana, M., Rahaima, R.J., Choi, J.Y., Noguchi, Y., Schürer, S., Chen, W.M., et al. (2013) Development of Highly Selective Casein Kinase 1δ/1ε (CK1δ/ε) Inhibitors with Potent Antiproliferative Properties. Bioorganic & Medicinal Chemistry Letters, 23, 4374-4380.
http://dx.doi.org/10.1016/j.bmcl.2013.05.075
[42] Condello, S., Cao, L. and Matei, D. (2013) Tissue Transglutaminase Regulates β-Catenin Signaling through a C-Src-Dependent Mechanism. The FASEB Journal, 27, 3100-3112.
http://dx.doi.org/10.1096/fj.12-222620
[43] Hinck, L., Näthke, I.S., Papkoff, J. and Nelson, W.J. (1994) Beta-Catenin: A Common Target for the Regulation of Cell Adhesion by Wnt-1 and Src Signaling Pathways. Trends in Biochemical Sciences, 19, 538-542.
http://dx.doi.org/10.1016/0968-0004(94)90057-4
[44] Bentli, R., Ciftci, O., Cetin, A., Unlu, M., Basak, N. and Cay, M. (2013) Oral Administration of Hesperidin, a Citrus Flavonone, in Rats Counteracts the Oxidative Stress, the Inflammatory Cytokine Production, and the Hepatotoxicity Induced by the Ingestion of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). European Cytokine Network, 24, 91-96.
[45] Jaeschke, H., Williams, C.D., Ramachandran, A. and Bajt, M.L. (2012) Acetaminophen Hepatotoxicity and Repair: The Role of Sterile Inflammation and Innate Immunity. Liver International, 32, 8-20.
http://dx.doi.org/10.1111/j.1478-3231.2011.02501.x
[46] Saab, L., Peluso, J., Muller, C.D. and Ubeaud-Sequier, G. (2013) Implication of Hepatic Transporters (MDR1 and MRP2) in Inflammation-Associated Idiosyncratic Drug-Induced Hepatotoxicity Investigated by Microvolume Cytometry. Cytometry Part A, 83, 403-408.
http://dx.doi.org/10.1002/cyto.a.22263
[47] Chang, C.P., Chang, J.Y., Wang, F.-Y., Tseng, J. and Chang, J.-G. (1995) The Effect of E.R. Extract on Cytokine Secretion by Human Mononuclear Cells in Vitro. The American Journal of Chinese Medicine, 23, 173-180.
http://dx.doi.org/10.1142/S0192415X95000237
[48] Chang, J.Y., Yang, T.Y., Chang, C.P. and Chang, J.G. (1996) The Effect of “Chi-Han (Hot Nature)” Chinese Herbs on the Secretion of IL-1 Beta and TNF-Alpha by Mononuclear Cells. Journal of Medical Sciences, 12, 8-24.