Methods of Approximation in hpk Framework for ODEs in Time Resulting from Decoupling of Space and Time in IVPs

Show more

References

[1] M. Gelfand and S. V. Foming, “Calculus of Variations,” Dover, New York, 2000.

[2] S. G. Mikhlin. “Variational Methods in Mathematical Physics,” Pergamon Press, New York, 1964.

[3] J. N. Reddy, “Functional Analysis and Variational Methods in Engineering,” McGraw-Hill, New York, 1986.

[4] J. N. Reddy, “Energy Principles and Variational Methods in Applied Mechanics,” 2nd Edition, John Wiley, New York, 2002.

[5] C. Johnson, “Numerical Solution of Partial Differential Equations by Finite Element Method,” Cambridge University Press, Cambridge, 1987.

[6] T. Be-lytschko and T. J. R. Hughes, “Computational Methods in Transient Analysis,” North-Holland, 1983.

[7] T. J. R. Hughes and T. Belytschko. “A Precis of Developments in Computational Methods for Transient Analysis,” Journal of Applied Mechanics, Vol. 50, No. 4a, 1983, 1033-1041. doi:10.1115/1.3167186

[8] Nathan M. Newmark. “A Method of Computation for Structural Dynamics,” Journal of the En-gineering Mechanics Division, Vol. 85, No. EM3, 1959, pp. 67-94.

[9] K. J. Bathe and E. L. Wilson, “Numerical Methods in Finite Element Analysis,” Prentice Hall, New Jersey, 1976.

[10] W. L. Wood, M. Bossak, and O. C. Zienkiewicz, “An Alpha Modification of Newmark’s Method,” International Journal for Numerical Methods in Engineering, Vol. 15, No. 10, 1980, pp. 1562-1566.
doi:10.1002/nme.1620151011

[11] M. Hans, J. Hilber, Tho-mas, R. Hughes and L. Robert Taylor, “Improved Numerical Dissipation for Time Integration Algorithms in Structural Dy-namics,” Earthquake Engineering and Structural Dynamics, Vol. 5, No. 3, 1977, 283-292. doi:10.1002/eqe.4290050306

[12] J. Chung and G. M. Hulbert, “A Time Integration Algorithm for Structural Dynamics with Improved Numerical Dissipation: The Generalized- Method,” Journal of Applied Mechanics, Vol. 60, No. 2, 1993, pp. 371-375.
doi:10.1115/1.2900803

[13] V. A. Leontiev, “Extension of LMS Formulations for L- Stable Optimal Integration Methods with U0-V0 Overshoot Properties in Structural Dynamics: The Level-Symmetric (LS) Integration Methods,” International Journal for Numerical Methods in Engineering, Vol. 71, No. 13, 2007，pp. 1598-1632.
doi:10.1002/nme.2008

[14] S. Erlicher, L. Bonaventura and O. S. Bursi, “The Analysis of the Generalized- Method for Non-Linear Dynamic Problems,” Computational Mechanics, Vol. 28, No. 2, 2002, pp. 83-104. doi:10.1007/s00466-001-0273-z

[15] D. Kuhl and M. A. Cris-field, “Energy-Conserving and Decaying Algorithms in Non-Linear Structural Dynamics,” International Journal for Numerical Methods in Engineering, Vol. 45, No. 5, 1999, pp. 569-599.
doi:10.1002/(SICI)1097-0207(19990620)45:5<569::AID-NME595>3.0.CO;2-A

[16] K. K. Tamma, X. Zhou and D. Sha. “A Theory of Development and Design of Generalized Integration Operators for Computational Structural Dynamics,” Interna-tional Journal for Numerical Methods in Engineering, Vol. 50, No. 7, 2001, pp. 1619-1664. doi:10.1002/nme.89

[17] K. K. Tamma and R. R. Namburu. “Applicability and Evaluation of an Implicit Self-Starting Unconditionally Stable Methodology for the Dynamics of Structures,” Computers and Structures, Vol. 34, No. 6, 1990, pp. 835-842. doi:10.1016/0045-7949(90)90354-5

[18] X. Zhou and K. K. Tamma, “Design, Analysis, and Synthesis of Generalized Sin-gle Step Single Solve and Optimal Algorithms for Structural Dynamics,” International Journal for Numerical Methods in Engineering, Vol. 59: No. 5, 2004, pp. 597-668. doi:10.1002/nme.873

[19] X. Zhou and K. K. Tamma. “Algo-rithms by Design With Illustrations to Solid and Structural Mechanics/Dyna- mics,” International Journal for Numerical Methods in Engineering, Vol. 66, No. 11, 2006, pp. 1738-1790.
doi:10.1002/nme.1559

[20] X. Zhou and K. K. Tamma. “A New Unified Theory Underlying Time Dependent Linear First-Order Systems: A Prelude to Algorithms by Design,” International Journal for Numerical Methods in Engineering, Vol. 60, No. 10, 2004, pp. 1699-1740. doi:10.1002/nme.1019

[21] A. Hoitink, S. Masuri, X. Zhou and K. K. Tamma, “Algorithms by Design: Part I – on the Hidden Point Collocation within LMS Methods and Implica-tions for Nonlinear Dynamics Applications,” International Journal for Computational Methods in Engineering Science and Mechanics, Vol. 9, No. 6, 2008, pp. 383-407.
doi:10.1080/15502280802365873

[22] K. K. Tamma, X. Zhou and D. Sha, “The Time Dimension: A Theory Towards the Evolution, Classification, Characterization and Design of Computational Algorithms for Transient/Dynamic Applica-tions,” Archives of Computational Methods in Engineering, Vol. 7, No. 2, 2000, pp. 67-290. doi:10.1007/BF02736209

[23] K. S. Surana and J. N. Reddy, “Mathematics of Computations and Finite Element Method for Boundary Value Problems,” ME 861 class notes. University of Kansas, Department of Me-chanical Engineering, Manuscript of textbook in preparation, 2010.

[24] K. S. Surana, “Mathematics of Computations and Finite Element Method for Initial Value Problems,” ME 862 class notes, University of Kansas, Department of Mechanical Engineering, Manuscript of textbook in preparation, 2010.

[25] K. S. Surana, A. Ahmadi and J. N. Reddy, “k-Version of Finite Element Method for Non-Linear Differen-tial Operators in BVP,” International Journal of Computational Engineering Science, Vol. 5, No. 1, 2004, pp. 133-207.
doi:10.1142/S1465876304002307

[26] K.S. Surana, J. N. Reddy and S. Allu, “The k-Version of Finite Element Method for Initial Value Problems: Mathematical and Computational Framework,” International Journal of Computational Methods in Engineering Science and Mechanics, Vol. 8, No. 3, 2007, pp. 123-136.
doi:10.1080/15502280701252321

[27] K. S. Surana, S. Allu, J. N. Reddy and P. W. Tenpas, “Least Squares Finite Element Processes In Hpk Mathematical Framework for Non-Linear Conservation Law,” International Journal of Numerical Meth-ods in Fluids, Vol. 57, No. 10, 2008, pp. 1545-1568.
doi:10.1002/fld.1695

[28] B. C. Bell and K. S. Surana, “p-Version Least Squares Finite Element Formulation of Two Dimensional Incompressible Non-Newtonian Isothermal and Non-Isothermal Fluid Flow,” International Journal of Numeri-cal Methods in Fluids, Vol. 18, No. 2, 1994, pp. 127-167.
doi:10.1002/fld.1650180202

[29] B. C. Bell and K. S. Surana. A Space-Time Coupled P-Version LSFEF for Unsteady Fluid Dynamics, International Journal for Numerical Methods in Engineering, Vol. 37, No. 20, 1994, pp. 3545-3569.
doi:10.1002/nme.1620372008

[30] D. L. Winterscheidt and K. S. Surana, “p-Version Least Squares Finite Element Formula-tion for Two Dimensional Incompressible Fluid Flow,” Inter-national Journal of Numerical Methods in Fluids, Vol. 18, No. 1, 1994, pp. 43-69. doi:10.1002/fld.1650180104

[31] D. L. Winterscheidt and K. S. Surana, “p-Version Least Squares Finite Element Formulation for Burgers Equation,” Interna-tional Journal for Numerical Methods in Engineering, Vol. 36, No. 21, 1993, pp. 3629-3646.
doi:10.1002/nme.1620362105

[32] K. S. Surana, A. Ahmadi and J. N. Reddy, “k-Version of Finite Element Method for Self-Adjoint Operators in BVP,” International Journal of Computational Engineering Science, Vol. 3, No. 2, 2002, pp. 155-218.
doi:10.1142/S1465876302000605

[33] K. S. Surana, A. Ahmadi, and J. N. Reddy, “k-Version Of Finite Element Method for Non-self-adjoint Operators in BVP,” International Journal of Computational Engineering Science, Vol. 4, No. 4, 2003, pp. 737-812.
doi:10.1142/S1465876303002179