[1] Alligood, K., Sauer, T. and Yorke, J. (1996) Chaos: An Introduction to Dynamical Systems. Springer-Verlag, New York.
[2] Strogatz, S. (1994) Nonlinear Dynamics and Chaos. Perseus Books, Cambridge.
[3] Schuster, H.G. and Just, W. (2005) Deterministic Chaos: An Introduction. 4th Edition, WILEY-VCH Verlag GmbH, Weinheim.
http://dx.doi.org/10.1002/3527604804
[4] Li, S., Li, Q., Li, W., Mou, X. and Cai, Y. (2001) Statistical Properties of Digital Piecewise Linear Chaotic Maps and Their Roles in Cryptography and Pseudo-Random Coding. Cryptography and Coding, 2260, 205-221.
http://dx.doi.org/10.1007/3-540-45325-3_19
[5] Addabbo, T., Alioto, M., Bernardi, S., Fort, A., Rocchi, S. and Vignoli, V. (2004) The Digital Tent Map: Performance Analysis and Optimized Design as a Source of Pseudo-Random Bits. Proceedings of the 21st IEEE Instrumentation and Measurement Technology Conference, IMTC 04, 2, 1301-1304.
[6] Addabbo, T., Alioto, M., Bernardi, S., Fort, A., Rocchi, S. and Vignoli, V. (2004) Hardware-Efficient PRBGs Based on 1-D Piecewise Linear Chaotic Maps. Proceedings of the 11th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2004, 13-15 December 2004, 242-245.
[7] Pareek, N., Patidar, V. and Sud, K. (2010) A Random Bit Generator Using Chaotic Maps. International Journal of Network Security, 10, 32-38.
[8] Shastry, M., Nagaraj, N. and Vaidya, P. (2006) The B-Exponential Map: A Generalization of the Logistic Map, and Its Applications in Generating Pseudo-Random Numbers. eprint arXiv.org:cs/0607069.
[9] Basios, V., Forti, G.L. and Gilbert, T. (2009) Statistical Properties of Time-Reversible Triangular Maps of the Square. Journal of Physics A: Mathematical and Theoretical, 42, 1-13.
http://dx.doi.org/10.1088/1751-8113/42/3/035102
[10] Huang, W. (2005) Characterizing Chaotic Processes That Generate Uniform Invariant Density. Chaos, Solitons & Fractals, 25, 449-460.
http://dx.doi.org/10.1016/j.chaos.2004.11.016
[11] Anikin, V., Arkadaksky, S., Kuptsov, S., Remizov, A. and Vasilenko, L. (2008) Lyapunov Exponent for Chaotic 1D Maps with Uniform Invariant Distribution. Bulletin of the Russian Academy of Sciences: Physics, 72, 1684-1688.
http://dx.doi.org/10.3103/S106287380812023X
[12] Huang, W. (2005) Constructing an Opposite Map to a Specified Chaotic Map. Nonlinearity, 18, 1375-1391.
http://dx.doi.org/10.1088/0951-7715/18/3/022