Back
 JAMP  Vol.3 No.5 , May 2015
On the Semi-Discrete Davey-Stewartson System with Self-Consistent Sources
Abstract: A differential-difference Davey-Stewartson system with self-consistent sources is constructed using the source generation procedure. We observe how the resulting coupled discrete system reduces to the identities for determinant by presenting the Gram-type determinant solution and Casorati-type determinant solution.
Cite this paper: Gegenhasi. (2015) On the Semi-Discrete Davey-Stewartson System with Self-Consistent Sources. Journal of Applied Mathematics and Physics, 3, 478-487. doi: 10.4236/jamp.2015.35060.
References

[1]   Hirota, R. (1977) Nonlinear Partial Difference Equations: I. A Difference Analogue of the Korteweg-de Vries Equation. Journal of the Physical Society of Japan, 43, 1424-1433.
http://dx.doi.org/10.1143/JPSJ.43.1424

[2]   Hirota, R. (1977) Nonlinear Partial Difference Equations: II. Discrete-Time Toda Equation. Journal of the Physical Society of Japan, 43, 2074-2078.
http://dx.doi.org/10.1143/JPSJ.43.2074

[3]   Hirota, R. (1977) Nonlinear Partial Difference Equations: III. Discrete Sine-Gordon Equation. Journal of the Physical Society of Japan, 43, 2079-2086.
http://dx.doi.org/10.1143/JPSJ.43.2079

[4]   Feng, B.F., Inoguchi, J., Kajiwara, K., Maruno, K. and Ohta, Y. (2013) Integrable Discretizations of the Dym Equation. Frontiers of Mathematics in China, 8, 1017-1029.
http://dx.doi.org/10.1007/s11464-013-0321-y

[5]   Hu, X.B. and Yu, G.F. (2007) Integrable Discretizations of the (2+1)-Dimensional Sinh-Gordon Equation. Journal of Physics A: Mathematical and Theoretical, 40, 12645-12659.
http://dx.doi.org/10.1088/1751-8113/40/42/S10

[6]   Hu, X.B. and Yu, G.F. (2009) Integrable Semi-Discretizations and Full-Discretization of the Two-Dimensional Leznov Lattice. Journal of Difference Equations and Applications, 15, 233-252.
http://dx.doi.org/10.1080/10236190802101695

[7]   Gegenhasi, Hu, X.B. and Levi, D. (2006) On a Discrete Davey-Stewartson System. Inverse Problems, 22, 1677-1688.
http://dx.doi.org/10.1088/0266-5611/22/5/009

[8]   Tsuchida, T. and Dimakis, A. (2011) On a (2 + 1)-Dimensional Generalization of the Ablowitz-Ladik Lattice and Adiscrete Davey-Stewartson System. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 325206.
http://dx.doi.org/10.1088/1751-8113/44/32/325206

[9]   Mel’nikov, V.K. (1983) On Equations for Wave Interactions. Letters in Mathematical Physics, 7, 129-136.
http://dx.doi.org/10.1007/BF00419931

[10]   Mel’nikov, V.K. (1990) Integration of the Korteweg-de Vries Equation with a Source. Inverse Problems, 6, 233-246.
http://dx.doi.org/10.1088/0266-5611/6/2/007

[11]   Mel’nikov, V.K. (1992) Integration of the Nonlinear Schrodinger Equation with a Source. Inverse Problems, 8, 133-147.
http://dx.doi.org/10.1088/0266-5611/8/1/009

[12]   Zeng, Y.B., Ma, W.X. and Lin, R.L. (2000) Integration of the Soliton Hierarchy with Self-Consistent Sources. Journal of Mathematical Physics, 41, 5453-5489.
http://dx.doi.org/10.1063/1.533420

[13]   Lin, R.L., Zeng, Y.B. and Ma, W.X. (2001) Solving the KdV Hierarchy with Self-Consistent Sources by Inverse Scattering Method. Physica A: Statistical Mechanics and Its Applications, 291, 287-298.
http://dx.doi.org/10.1016/S0378-4371(00)00519-7

[14]   Zeng, Y.B., Ma, W.X. and Shao, Y.J. (2001) Two Binary Darboux Transformations for the KdV Hierarchy with Self-Consistent Sources. Journal of Mathematical Physics, 42, 2113-2128.
http://dx.doi.org/10.1063/1.1357826

[15]   Zeng, Y.B., Shao, Y.J. and Ma, W.X. (2002) Integral-Type Darboux Transformation for the mKdV Hierarchy with Self-Consistent Sources. Communications in Theoretical Physics, 38, 641-648.
http://dx.doi.org/10.1088/0253-6102/38/6/641

[16]   Xiao, T. and Zeng, Y.B. (2004) Generalized Darboux Transformations for the KP Equation with Self-Consistent Sources. Journal of Physics A: Mathematical and General, 37, 7143-7162.
http://dx.doi.org/10.1088/0305-4470/37/28/006

[17]   Liu, X.J. and Zeng, Y.B. (2005) On the Toda Lattice Equation with Self-Consistent Sources. Journal of Physics A: Mathematical and General, 38, 8951-8965.
http://dx.doi.org/10.1088/0305-4470/38/41/008

[18]   Hase, Y., Hirota, R., Ohta, Y. and Satsuma, J. (1989) Soliton Solutions of the Mel’nikov Equations. Journal of the Physical Society of Japan, 58, 2713-2720.

[19]   Matsuno, Y. (1991) Bilinear Backlund Transformation for the KdV Equation with a Source. Journal of Physics A: Mathematical and General, 24, L273.
http://dx.doi.org/10.1088/0305-4470/24/6/005

[20]   Hu, X.B. (1991) Nonlinear Superposition Formula of the KdV Equation with a Source. Journal of Physics A: Mathematical and General, 24, 5489-5497.
http://dx.doi.org/10.1088/0305-4470/24/23/015

[21]   Matsuno, Y. (1990) KP Equation with a Source and Its Soliton Solutions. Journal of Physics A: Mathematical and General, 23, L1235.
http://dx.doi.org/10.1088/0305-4470/23/23/009

[22]   Zhang, D.J. (2002) The N-Soliton Solutions for the Modified KdV Equation with Self-Consistent Sources. Journal of the Physical Society of Japan, 71, 2649-2656.
http://dx.doi.org/10.1143/JPSJ.71.2649

[23]   Deng, S.F., Chen, D.Y. and Zhang, D.J. (2003) The Multisoliton Solutions of the KP Equation with Self-Consistent Sources. Journal of the Physical Society of Japan, 72, 2184-2192.
http://dx.doi.org/10.1143/JPSJ.72.2184

[24]   Zhang, D.J. and Chen, D.Y. (2003) The N-Soliton Solutions of the Sine-Gordon Equation with Self-Consistent Sources. Physica A: Statistical Mechanics and Its Applications, 321, 467-481.
http://dx.doi.org/10.1016/S0378-4371(02)01742-9

[25]   Zhang, D.J. (2003) The N-Soliton Solutions of Some Soliton Equations with Self-Consistent Sources. Chaos, Solitons and Fractals, 18, 31-43.
http://dx.doi.org/10.1016/S0960-0779(02)00636-7

[26]   Gegenhasi and Hu, X.-B. (2006) On an Integrable Differential-Difference Equation with a Source. Journal of Nonlinear Mathematical Physics, 13, 183-192.
http://dx.doi.org/10.2991/jnmp.2006.13.2.3

[27]   Hu, X.B. and Wang, H.Y. (2006) Construction of dKP and BKP Equation with Self-Consistent Sources. Inverse Problems, 22, 1903-1920.
http://dx.doi.org/10.1088/0266-5611/22/5/022

[28]   Hirota, R. (2004) Direct Method in Soliton Theory. Cambridge University Press, Cambridge. Edited and Translated by Nagai, A., Nimmo, J. and Gilson, C. (In English)

[29]   Hu, J., Wang, H.Y. and Tam, H.W. (2008) Source Generation of the Davey-Stewartson Equation. Journal of Mathematical Physics, 49, Article ID: 013506.
http://dx.doi.org/10.1063/1.2830432

 
 
Top