OJG  Vol.5 No.5 , May 2015
Chronology, Geochemistry and Geological Significance of Haizi Bimodal Intrusive Bodies in Wuding District, Central Yunnan
ABSTRACT
The Haizi diabase-granite porphyry composite rock mass is located in the Wuding-Yanjing taphrogenic trough within the Paleoproterozoic Kangdian fault-uplift zone. According to field observations, the diabase is divided into two types: central facies and marginal facies; the granite porphyry directly contacts the central facies of diabase without transitional intermediate rock. In order to disclose its geological and petrological significances, this paper carried out the LA-ICP-MS zircon U-Pb dating and geochemical investigation on both masses of Haizi diabase and granite porphyry. The results showed that the207Pb/206Pb weighted average age of granite porphyry is 1764 ± 18 Ma and diabase 1765 ± 5.4 Ma. The geochemical investigations revealed that the Haizi diabase is a kind of high-potassium alkaline basalt and the granite porphyry a kind of low-potassium rhyolite, both enriched with high field intensity elements and depleted in large-ion lithophile elements; there is obvious component intermittence between the diabase and the granite porphyry, both being bimodal and showing characteristics of continental rift valley magmatite. The in situ Hf isotope of dating zircon showed that mantle materials participated in the formation and emplacement of Haizi granite porphyry and crust materials participated in the formation of diabase. This meant that crustal remelting and accretion of new crust occurred in this region in the 1.7 Ga period. It can be therefore inferred that the Haizi bimodal intrusive rock came into being due to the breakup of Kunyang rift valley and rapid ascent of mantle materials in the 1.7 Ga period, which echoed the global Columbia supercontinent breakup and was the first petrological record of that breakup found at the southwest margin of Yangtze platform.

Cite this paper
Yang, B. , Wang, W. , Dong, G. , Guo, Y. , Wang, Z. and Hou, L. (2015) Chronology, Geochemistry and Geological Significance of Haizi Bimodal Intrusive Bodies in Wuding District, Central Yunnan. Open Journal of Geology, 5, 239-253. doi: 10.4236/ojg.2015.55022.
References
[1]   Li, Z.X., Zhang, L., Christopher, M.A., et al. (1995) South China in Rodinia-Part of the Missing Link between Australia-East Antarctica and Laurentia? Geology, 23, 407-410.

[2]   Fitzsimons (1992) Grenville-Age Basement Provinces in East Antarctica-Evidence for Three Separate Collisional Origins. Geology, 28, 879-882.

[3]   Li, Z.X., Li, X.H., Zhou, H.W., et al. (2002) Grenvillian Continental Collision in South China-New SHRIMP U-Pb Zircon Results and Implication for the Configuration of Rodinia. Geology, 30, 163-166.

[4]   Yan, D.P., Zhou, M.F., Song, H.L., et al. (2002) Where Was South China Located in the Reconstruction of Rodinia? Earth Science Frontiers, 9, 249-256.

[5]   Wang, H.J., Li, J.C. and Xue, J.Y. (2009) Response of Proterozoic Mineralization on the Kangdian Axis to the Rodinia Breakup. Acta Geological Sichuan, 29, 11-15.

[6]   Zhao, G.C., Cawood, P.A., Wilde, S.A. and Sun, M. (2002) Review of Global 2.1 - 1.8 Ga Origins: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59, 125-162.
http://dx.doi.org/10.1016/S0012-8252(02)00073-9

[7]   Luo, Y.N. (1985) Contribution to Pan Zhihua-Xi Chang Rift Zone, China. In: Zhang, Y.X. and Liu, B.G., Eds., Pan-Xi Rift Anthology in China, Geological Publishing House, Beijing, 1-25. (In Chinese)

[8]   Hua, R.M. (1990) On the Kunyang Aulacogen. Acta Geological Sinica, 64, 23-27. (In Chinese)

[9]   Gong, L., He, Y.T., Cheng, T.Y., et al. (1996) Kunyang Ancient Rift Type Copper Deposit, Dongchuan, Yunna. Metallurgical Industry Press, Beijing, 62-68. (In Chinese)

[10]   Hou, K.J., Li, Y.H. and Tian, Y.R. (2009) In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28, 481-492.

[11]   Wang, Z.Z., Guo, Y., Yang, B., Wang, S.W., Sun, X.M., Hou, L., et al. (2013) Discovery of the 1.73Ga Haizi Anorogenic Type Granite in the Western Margin of Yangtze Craton, and Its Geological Significance. Acta Geologica Sinica, 87, 931-942.

[12]   Middlemost, E.A.K. (1985) Magmas and Magmatic Rocks. Longman, London, 1-266.

[13]   Peccerillo, A. and Taylor, S.R. (1976) Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.
http://dx.doi.org/10.1007/BF00384745

[14]   Sun, S. and MacDonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society London, Special Publications, 42, 313-345.

[15]   Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25, 956-983.
http://dx.doi.org/10.1093/petrology/25.4.956

[16]   Deng, J.F. (1996) Continental Roots-Plume Tectonics of China: Key to the Continental Dynamics. Geological Publishing House, Beijing, 49-52.

[17]   Wu, F.Y., Li, X.H., Zheng, Y.F. and Gao, S. (2007) Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23, 185-220.

[18]   Pearce, J.A. and Norry, M.J. (1979) Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Intrusive Rocks. Contributions to Mineralogy and Petrology, 69, 33-47.
http://dx.doi.org/10.1007/BF00375192

[19]   Lin, Q., Ge, W.S., Sun, Y.D., Wu, F.Y., Chongkwan, W., Emoonwon, L., et al. (2000) Genetic Relationships between Two Types of Mesozoic Rhyolites and Basalts in Great Xing’an Ridge. Journal of Changchun University of Science and Technology, 30, 322-328.

[20]   Macdonald, R., Davies, G.R., Bliss, C.M., Leat, P.T., Bailey, D.K. and Smith, R.L. (1987) Geochemistry of High-Silica Peralkaline Rhyolites, Naivasha, Kenya Rift Valley. Journal of Petrology, 28, 979-1008. http://dx.doi.org/10.1093/petrology/28.6.979

[21]   Davies, G.R. and Macdonald, R. (1987) Crustal Influences in the Petrogenesis of the Naivasha Basalt-Cementite Complex: Combined Trace Element and Sr-Nd-Pb Isotope Constraints. Journal of Petrology, 28, 1009-1031. http://dx.doi.org/10.1093/petrology/28.6.1009

[22]   Black, S., Macdonald, R. and Kelly, M.R. (1997) Crustal Origin for Peralkaline Rhyolites from Kenya: Evidence from U-Series Disequilibria and Th-Isotopes. Journal of Petrology, 38, 277-297.
http://dx.doi.org/10.1093/petroj/38.2.277

[23]   Chang, X.Y., Zhu, B.Q., Sun, D.Z., Qiu, H.N. and Zou, R. (1997) Isotope Geochemistry Study of Dongchuan Copper Deposits in Middle Yunnan Province, SW China: Stratigraphic Chronology and Application of Geochemical Exploration by Lead Isotopes. Geochimica, 26, 32-38.

[24]   Zhao, X.F., Zhou, M.F., Li, J.W., Sun, M., Gao, J.F., Sun, W.H. and Yang, J.H. (2010) Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182, 57-69.
http://dx.doi.org/10.1016/j.precamres.2010.06.021

[25]   Wang, S.W., Liao, Z.W., Yu, Y.S., et al. (2011) Western Margin of the Yangtze Basement Mineralization and Prospecting Direction. Chengdu Center, China Geological Survey, Chengdu.

[26]   Bacon, C.R. and Druitt, T.H. (1988) Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98, 224-256. http://dx.doi.org/10.1007/BF00402114

[27]   Cull, J.P., O’Reilly, S.Y. and Griffin, W.L. (1991) Xenolith Geotherms and Crustal Models in Eastern Australia. Tectonophysics, 192, 359-366. http://dx.doi.org/10.1016/0040-1951(91)90109-6

[28]   Condie, K.C. (2002) Breakup of a Paleoproterozoic Supercontinent. Gondwana Research, 5, 41-43. http://dx.doi.org/10.1016/S1342-937X(05)70886-8

[29]   Christiansen, E.H., Haapala, I. and Hart, G.L. (2007) Are Cenozoic Topaz Rhyolites the Erupted Equivalents of Proterozoic Rapakivi Granites? Examples from the Western United States and Finland. Lithos, 97, 219-246. http://dx.doi.org/10.1016/j.lithos.2007.01.010

[30]   Doe, T. and Remer, J. (1982) Analysis of Constant-Head Well Tests in Nonporous Fractured Rock. Journal of Petrology, 18, 104-141.

[31]   Ernst, R.E., Wingate, M.T.D., Buchan, K.L., et al. (2008) Global Record of 1600 - 700 Ma Large Igneous Provinces (LIPs): Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research, 160, 159-178.

[32]   Mahoney, J.J. (1997) Large Igneous Province: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph 100, American Geophysical Union, Washington DC, 297-333.

[33]   Grove, T.L. and Kinzler, R.J. (1986) Petrogenesis of Andesites. Annual Review of Earth and Planetary Sciences, 14, 417-454.

[34]   Geist, D., Howard, K.A. and Larson, P. (1995) The Generation of Oceanic Rhyolites by Cry Stalfractionation: The Basalt-Rhyolite Association at Volcano Alcedo, Galpagos Archipelago. Journal of Petrology, 8, 304-341.

[35]   Guo, Y., Wang, S.W., Sun, X.M., Wang, Z.Z., Yang, B., et al. (2014) The Paleoproterozoic Breakup Event in the Southwest Yangtze Block: Evidence from U-Pb Zircon Age and Geochemistry of Diabase in Wuding, Yunnan Province, SW China. Acta Geologica Sinica, 88, 1651-1665.

[36]   Huppert, H.E. and Sparks, R.S.J. (1988) The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust. Journal of Petrology, 29, 599-624. http://dx.doi.org/10.1093/petrology/29.3.599

[37]   Hildreth, W. (1981) Gradients in Silicic Magma Chambers: Implications for Lithospheric Magmatism. Journal of Geophysical Research: Solid Earth (1978-2012), 86, 10153-10192.

[38]   Li, Z.X., Zhang, L., Christopher, M.A., et al. (1995) South China in Rodinia-Part of the Missing Link between Australia-East Antarctica and Laurentia? Geology, 23, 407-410.

[39]   Fitzsimons (1992) Grenville-Age Basement Provinces in East Antarctica-Evidence for Three Separate Collisional Origins. Geology, 28, 879-882.

[40]   Li, Z.X., Li, X.H., Zhou, H.W., et al. (2002) Grenvillian Continental Collision in South China-New SHRIMP U-Pb Zircon Results and Implication for the Configuration of Rodinia. Geology, 30, 163-166.

[41]   Yan, D.P., Zhou, M.F., Song, H.L., et al. (2002) Where Was South China Located in the Reconstruction of Rodinia? Earth Science Frontiers, 9, 249-256.

[42]   Wang, H.J., Li, J.C. and Xue, J.Y. (2009) Response of Proterozoic Mineralization on the Kangdian Axis to the Rodinia Breakup. Acta Geological Sichuan, 29, 11-15.

[43]   Zhao, G.C., Cawood, P.A., Wilde, S.A. and Sun, M. (2002) Review of Global 2.1 - 1.8 Ga Origins: Implications for a Pre-Rodinia Supercontinent. Earth-Science Reviews, 59, 125-162.
http://dx.doi.org/10.1016/S0012-8252(02)00073-9

[44]   Luo, Y.N. (1985) Contribution to Pan Zhihua-Xi Chang Rift Zone, China. In: Zhang, Y.X. and Liu, B.G., Eds., Pan-Xi Rift Anthology in China, Geological Publishing House, Beijing, 1-25. (In Chinese)

[45]   Hua, R.M. (1990) On the Kunyang Aulacogen. Acta Geological Sinica, 64, 23-27. (In Chinese)

[46]   Gong, L., He, Y.T., Cheng, T.Y., et al. (1996) Kunyang Ancient Rift Type Copper Deposit, Dongchuan, Yunna. Metallurgical Industry Press, Beijing, 62-68. (In Chinese)

[47]   Hou, K.J., Li, Y.H. and Tian, Y.R. (2009) In Situ U-Pb Zircon Dating Using Laser Ablation-Multi Ion Counting-ICP-MS. Mineral Deposits, 28, 481-492.

[48]   Wang, Z.Z., Guo, Y., Yang, B., Wang, S.W., Sun, X.M., Hou, L., et al. (2013) Discovery of the 1.73Ga Haizi Anorogenic Type Granite in the Western Margin of Yangtze Craton, and Its Geological Significance. Acta Geologica Sinica, 87, 931-942.

[49]   Middlemost, E.A.K. (1985) Magmas and Magmatic Rocks. Longman, London, 1-266.

[50]   Peccerillo, A. and Taylor, S.R. (1976) Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81. http://dx.doi.org/10.1007/BF00384745

[51]   Sun, S. and MacDonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society London, Special Publications, 42, 313-345.

[52]   Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25, 956-983.
http://dx.doi.org/10.1093/petrology/25.4.956

[53]   Deng, J.F. (1996) Continental Roots-Plume Tectonics of China: Key to the Continental Dynamics. Geological Publishing House, Beijing, 49-52.

[54]   Wu, F.Y., Li, X.H., Zheng, Y.F. and Gao, S. (2007) Lu-Hf Isotopic Systematics and Their Applications in Petrology. Acta Petrologica Sinica, 23, 185-220.

[55]   Pearce, J.A. and Norry, M.J. (1979) Petrogenetic Implications of Ti, Zr, Y, and Nb Variations in Intrusive Rocks. Contributions to Mineralogy and Petrology, 69, 33-47.
http://dx.doi.org/10.1007/BF00375192

[56]   Lin, Q., Ge, W.S., Sun, Y.D., Wu, F.Y., Chongkwan, W., Emoonwon, L., et al. (2000) Genetic Relationships between Two Types of Mesozoic Rhyolites and Basalts in Great Xing’an Ridge. Journal of Changchun University of Science and Technology, 30, 322-328.

[57]   Macdonald, R., Davies, G.R., Bliss, C.M., Leat, P.T., Bailey, D.K. and Smith, R.L. (1987) Geochemistry of High-Silica Peralkaline Rhyolites, Naivasha, Kenya Rift Valley. Journal of Petrology, 28, 979-1008. http://dx.doi.org/10.1093/petrology/28.6.979

[58]   Davies, G.R. and Macdonald, R. (1987) Crustal Influences in the Petrogenesis of the Naivasha Basalt-Cementite Complex: Combined Trace Element and Sr-Nd-Pb Isotope Constraints. Journal of Petrology, 28, 1009-1031. http://dx.doi.org/10.1093/petrology/28.6.1009

[59]   Black, S., Macdonald, R. and Kelly, M.R. (1997) Crustal Origin for Peralkaline Rhyolites from Kenya: Evidence from U-Series Disequilibria and Th-Isotopes. Journal of Petrology, 38, 277-297.
http://dx.doi.org/10.1093/petroj/38.2.277

[60]   Chang, X.Y., Zhu, B.Q., Sun, D.Z., Qiu, H.N. and Zou, R. (1997) Isotope Geochemistry Study of Dongchuan Copper Deposits in Middle Yunnan Province, SW China: Stratigraphic Chronology and Application of Geochemical Exploration by Lead Isotopes. Geochimica, 26, 32-38.

[61]   Zhao, X.F., Zhou, M.F., Li, J.W., Sun, M., Gao, J.F., Sun, W.H. and Yang, J.H. (2010) Late Paleoproterozoic to Early Mesoproterozoic Dongchuan Group in Yunnan, SW China: Implications for Tectonic Evolution of the Yangtze Block. Precambrian Research, 182, 57-69.
http://dx.doi.org/10.1016/j.precamres.2010.06.021

[62]   Wang, S.W., Liao, Z.W., Yu, Y.S., et al. (2011) Western Margin of the Yangtze Basement Mineralization and Prospecting Direction. Chengdu Center, China Geological Survey, Chengdu.

[63]   Bacon, C.R. and Druitt, T.H. (1988) Compositional Evolution of the Zoned Calcalkaline Magma Chamber of Mount Mazama, Crater Lake, Oregon. Contributions to Mineralogy and Petrology, 98, 224-256. http://dx.doi.org/10.1007/BF00402114

[64]   Cull, J.P., O’Reilly, S.Y. and Griffin, W.L. (1991) Xenolith Geotherms and Crustal Models in Eastern Australia. Tectonophysics, 192, 359-366. http://dx.doi.org/10.1016/0040-1951(91)90109-6

[65]   Condie, K.C. (2002) Breakup of a Paleoproterozoic Supercontinent. Gondwana Research, 5, 41-43. http://dx.doi.org/10.1016/S1342-937X(05)70886-8

[66]   Christiansen, E.H., Haapala, I. and Hart, G.L. (2007) Are Cenozoic Topaz Rhyolites the Erupted Equivalents of Proterozoic Rapakivi Granites? Examples from the Western United States and Finland. Lithos, 97, 219-246. http://dx.doi.org/10.1016/j.lithos.2007.01.010

[67]   Doe, T. and Remer, J. (1982) Analysis of Constant-Head Well Tests in Nonporous Fractured Rock. Journal of Petrology, 18, 104-141.

[68]   Ernst, R.E., Wingate, M.T.D., Buchan, K.L., et al. (2008) Global Record of 1600 - 700 Ma Large Igneous Provinces (LIPs): Implications for the Reconstruction of the Proposed Nuna (Columbia) and Rodinia Supercontinents. Precambrian Research, 160, 159-178.

[69]   Mahoney, J.J. (1997) Large Igneous Province: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph 100, American Geophysical Union, Washington DC, 297-333.

[70]   Grove, T.L. and Kinzler, R.J. (1986) Petrogenesis of Andesites. Annual Review of Earth and Planetary Sciences, 14, 417-454.

[71]   Geist, D., Howard, K.A. and Larson, P. (1995) The Generation of Oceanic Rhyolites by Cry Stalfractionation: The Basalt-Rhyolite Association at Volcano Alcedo, Galpagos Archipelago. Journal of Petrology, 8, 304-341.

[72]   Guo, Y., Wang, S.W., Sun, X.M., Wang, Z.Z., Yang, B., et al. (2014) The Paleoproterozoic Breakup Event in the Southwest Yangtze Block: Evidence from U-Pb Zircon Age and Geochemistry of Diabase in Wuding, Yunnan Province, SW China. Acta Geologica Sinica, 88, 1651-1665.

[73]   Huppert, H.E. and Sparks, R.S.J. (1988) The Generation of Granitic Magmas by Intrusion of Basalt into Continental Crust. Journal of Petrology, 29, 599-624. http://dx.doi.org/10.1093/petrology/29.3.599

[74]   Hildreth, W. (1981) Gradients in Silicic Magma Chambers: Implications for Lithospheric Magmatism. Journal of Geophysical Research: Solid Earth (1978-2012), 86, 10153-10192.

 
 
Top