[1] Demestre, M., Messerli, S.M., Celli, N., Shahhossini, M., Kluwe, L., Mautner, V. and Maruta, H. (2008) CAPE (Caffeic Acid Phenethyl Ester)-Based Propolis Extract (Bio 30) Suppresses the Growth of Human Neurofibromatosis (NF) Tumor Xenografts in Mice. Phytotherapy Research, 23, 226-230.
http://dx.doi.org/10.1002/ptr.2594
[2] Natarajan, K., Singh, S., Burke, T.R., Grunberger, D. and Aggarwal, B.B. (1996) Caffeic Acid Phenethyl Ester Is a Potent and Specific Inhibitor of Activation of Nuclear Transcription Factor NF-Kappa B. Proceedings of the National Academy of Sciences of the United States of America, 93, 9090-9095.
http://dx.doi.org/10.1073/pnas.93.17.9090
[3] Orban, Z., Mitsiades, N., Burke, T.R., Tsokos, M. and Chrousos, G.P. (2000) Caffeic Acid Phenethyl Ester Induces Leukocyte Apoptosis, Modulates Nuclear Factor-Kappa B and Suppresses Acute Inflammation. Neuroimmunomodulation, 7, 99-105.
http://dx.doi.org/10.1159/000026427
[4] Huang, M.T., Ma, W., Yen, P., Xie, J.G., Han, J., Frenkel, K., Grunberger, D. and Conney, A.H. (1996) Inhibitory Effects of Caffeic Acid Phenethyl Ester (CAPE) on 12-O-Tetradecanoylphorbol-13-Acetate-Induced Tumor Promotion in Mouse Skin and The Synthesis of DNA, RNA and Protein in Hela Cells. Carcinogenesis, 17, 761-765.
http://dx.doi.org/10.1093/carcin/17.4.761
[5] Huang, M.T., Smart, R.C., Wong, C.Q. and Conney, A.H. (1988) Inhibitory Effect of Curcumin, Chlorogenic Acid, Caffeic Acid, and Ferulic Acid on Tumor Promotion in Mouse Skin by 12-O-Tetradecanoylphorbol-13-Acetate. Cancer Research, 48, 5941-5946.
[6] Rajan, P., Vedernikova, I., Cos, P., Berghe, D.V., Augustyns, K. and Haemers, A. (2001) Synthesis and Evaluation of Caffeic Acid Amides as Antioxidants. Bioorganic & Medicinal Chemistry Letters, 11, 215-217.
http://dx.doi.org/10.1016/S0960-894X(00) 00630-2
[7] Naito, Y., Sugiura, M., Yamaura, Y., Fukaya, C., Yokoyama, K., Nakagawa, Y., Ikeda, T., Senda, M. and Fujita, T. (1991) Quantitative Structure-Activity Relationship of Catechol Derivatives Inhibiting 5-Lipoxygenase. Chemical and Pharmaceutical Bulletin, 39, 1736-1745.
http://dx.doi.org/10.1248/cpb.39.1736
[8] Son, S. and Lewis, B.J. (2002) Free Radical Scavenging and Antioxidative Activity of Caffeic Acid Amide and Ester Analogues: Structure-Activity Relationship. Journal of Agricultural and Food Chemistry, 50, 468-472.
http://dx.doi.org/10.1021/jf010830b
[9] Nishioka, T., Watanabe, J., Kawabata, J. and Niki, R. (1997) Isolation and Activity of N-p-Coumaroyltyramine, an α- Glucosidase Inhibitor in Welsh Onion (Allium fistulosum). Bioscience, Biotechnology, and Biochemistry, 61, 1138- 1141.
http://dx.doi.org/10.1271/bbb.61.1138
[10] Macias-Perez, J.R., Beltrán-Ramírez, O., Vásquez-Garzón, V.R., Salcido-Neyoy, M.E., Martínez-Soriano, P.A., Ruiz-Sanchez, M.B., ángeles E. and Villa-Trevino, S. (2013) The Effect of Caffeic Acid Phenethyl Ester Analogues in a Modified Resistant Hepatocyte Model. Anti-Cancer Drugs, 24, 394-405.
http://dx.doi.org/10.1097/CAD.0b013e32835e9743
[11] Plagens, A. and Laue, T. (2005) Named Organic Reactions. 2nd Edition, John Wiley & Sons, New York, 320.
[12] Wolff, H. (1946) The Schmidt Reaction. Organic Reactions, 3, 307-336.
[13] Chandrasekhar, S. and Gopalaiah, K. (2003) Ketones to Amides via a Formal Beckmann Rearrangement in “One Pot”: A Solvent-Free Reaction Promoted by Anhydrous Oxalic Acid. Possible Analogy with the Schmidt Reaction. Tetrahedron Letters, 44, 7437-7439.
http://dx.doi.org/10.1016/j.tetlet.2003.08.038
[14] Yadav, J.S., Reddy, B.V.S., Reddy, U.V.S. and Praneeth, K. (2008) Azido-Schmidt Reaction for the Formation of Amides, Imides and Lactams from Ketones in the Presence of FeCl3. Tetrahedron Letters, 49, 4742-4745.
http://dx.doi.org/10.1016/j.tetlet.2008.05.113
[15] Lee, H.-L. and Aubé, J. (2007) Intramolecular and Intermolecular Schmidt Reactions of Alkyl Azides with Aldehydes. Tetrahedron, 63, 9007-9015.
http://dx.doi.org/10.1016/j.tet.2007.05.079
[16] Liang, J., Jing, L. and Shang, Z.C. (2011) Metal-Free Synthesis of Amides by Oxidative Amidation of Aldehydes with Amines in PEG/Oxidant System. Tetrahedron, 67, 8532-8535.
http://dx.doi.org/10.1016/j.tet.2011.08.091
[17] Zhang, M. and Wu, X.F. (2013) Zinc(II)-Catalyzed Oxidative Amidation of Arylaldehydes with Alkylamines under Solvent-Free Conditions. Tetrahedron Letters, 54, 1059-1062.
http://dx.doi.org/10.1016/j.tetlet.2012.12.010
[18] Suto, Y., Yamagiwa, N. and Torisawa, Y. (2008) Pd-Catalyzed Oxidative Amidation of Aldehydes with Hydrogen Peroxide. Tetrahedron Letters, 49, 5732-5735.
http://dx.doi.org/10.1016/j.tetlet.2008.07.075
[19] Organic Chemistry Portal 2008.
www.organic-chemistry.org
[20] Strukil, V., Bartolec, B., Portada, T., Dilovic, I., Halasz, I. and Margetic, D. (2012) One-Pot Mechanosynthesis of Aromatic Amides and Dipeptides from Carboxylic Acids and Amines. Chemical Communications, 48, 12100-12102.
[21] Gooben, L.J., Ohlmann, D.M. and Lange, P.P. (2009) The Thermal Amidation of Carboxylic Acids Revisited. Synthesis, 2009, 160-164.
http://dx.doi.org/10.1055/s-0028-1083277
[22] Hosseini, M., Sodagar, E. and Doroodmand, M.M. (2011) Nano Sulfated Titania as Solid Acid Catalyst in Direct Synthesis of Fatty Acid Amides. The Journal of Organic Chemistry, 76, 2853-2859.
http://dx.doi.org/10.1021/jo2002769
[23] Dunetz, J., Xiang, Y., Baldwin, A. and Ringling, J. (2011) General and Scalable Amide Bond Formation with Epimerization-Prone Substrates Using T3P and Pyridine. Organic Letters, 13, 5048-5051.
[24] Huang, Z.P., Reilly, J.R. and Buckle, R.N. (2007) An Efficient Synthesis of Amides and Esters via Triacyloxyboranes. Synlett, 2007, 1026-1030.
http://dx.doi.org/10.1055/s-2007-973890
[25] Chung, S., Uccello, D.P., Choi, H., Montgomery, J.I. and Chen, J. (2011) Trimethylaluminium-Facilitated Direct Amidation of Carboxylic Acids. Synlett, 2011, 2072-2074.
[26] Khalafi-Nezhad, A., Parhami, A., Rad, M.N.S. and Abdolkarim, Z. (2005) Efficient Method for the Direct Preparation of Amides from Carboxylic Acids Using Tosyl Chloride under Solvent-Free Conditions. Tetrahedron Letters, 46, 6879-6882.
http://dx.doi.org/10.1016/j.tetlet.2005.08.021
[27] Khalafi-Nezhad, A., Mokhtari, B. and Rad, M.N.S. (2003) Direct Preparation of Primary Amides from Carboxylic Acids and Urea Using Imidazole under Microwave Irradiation. Tetrahedron Letters, 44, 7325-7328.
[28] Lannuzel, M., Lamothe, M. and Perez, M. (2001) An Efficient One-Pot, Purification-Free, Preparation of Amides Using Polymer-Supported Reagents. Tetrahedron Letters, 42, 6703-6705.
http://dx.doi.org/10.1016/S0040-4039(01)01387-9
[29] Shaabani, A., Soleimani, E. and Rezayan, A.H. (2007) A Novel Approach for the Synthesis of Aryl Amides. Tetrahedron Letters, 48, 6137-6141.
http://dx.doi.org/10.1016/j.tetlet.2007.06.136
[30] Huang, P., Zheng, X. and Deng, X. (2001) DIBAL-H-H2NR and DIBAL-H-HNR1R2·HCl Complexes for Efficient Conversion of Lactones and Esters to Amides. Tetrahedron Letters, 42, 9039-9041.
http://dx.doi.org/10.1016/S0040-4039(01)01933-5
[31] Ghaffarzadeh, M., Joghan, S.S. and Faraji, F. (2012) A New Method for the Synthesis of Amides from Imines. Tetrahedron Letters, 53, 203-206.
http://dx.doi.org/10.1016/j.tetlet.2011.11.018
[32] Kim, B., Lee, H.G., Kang, S.B., Sung, G.H., Kim, J.J., Park, J.K., Lee, S.G. and Yoon, Y.J. (2012) Tert-Butoxide-Assisted Amidation of Esters under Green Conditions. Synthesis, 2012, 42-50.
[33] Veitch, G., Bridgwood, K.L. and Ley, S.V. (2008) Magnesium Nitride as a Convenient Source of Ammonia: Preparation of Primary Amides. Organic Letters, 10, 3623-3625.
[34] Cao, L., Ding, J., Gao, M., Wang, Z., Li, J. and Wu, A. (2009) Novel and Direct Transformation of Methyl Ketones or Carbinols to Primary Amides by Employing Aqueous Ammonia. Organic Letters, 11, 3810-3813.
[35] Sinha, A.K., Sharma, A. and Joshi, B.P. (2007) One-Pot Two-Step Synthesis of 4-Vinylphenols from 4-Hydroxy Substituted Benzaldehydes under Microwave Irradiation: A New Perspective on the Classical Knoevenagel-Doebner Reaction. Tetrahedron, 63, 960-965.
http://dx.doi.org/10.1016/j.tet.2006.11.023
[36] Wu, X.-A., Ying, P., Liu, J.-Y., Shen, H.-S., Chen, Y. and He, L. (2009) Lithium Chloride-Assisted Selective Hydrolysis of Methyl Esters under Microwave Irradiation. Synthetic Communications, 39, 3459-3470.
[37] Phillips, A.P. (1954) The Condensation of Aromatic Aldehydes with 2-Ethylpyridine and with 4-Ethylpyridine. Journal of the American Chemical Society, 76, 3986-3987.
http://dx.doi.org/10.1021/ja01644a036
[38] Szymanski, W., Wu, B., Weiner, B., de Wildeman, S., Feringa, B.L. and Janssen, D.B. (2009) Phenylalanine Amino- mutase-Catalyzed Addition of Ammonia to Substituted Cinnamic Acids: A Route to Enantiopure α- and β-Amino Acids. The Journal of Organic Chemistry, 74, 9152-9157.
[39] Singh, G., Bali, S. and Singh, A.K. (2007) Palladium(0) Complexes of (P,P) and (P,N) Ligands Immobilized on Silica Gel as Catalysts in Selective Heck Type Carbon-Carbon Coupling Reactions. Polyhedron, 26, 897-903.
http://dx.doi.org/10.1016/j.poly.2006.09.043
[40] Brittelli, D.R. (1981) Phosphite-Mediated in Situ Carboxyvinylation: A New General Acrylic Acid Synthesis. The Journal of Organic Chemistry, 46, 2514-2520.
[41] Fukuyama, T., Arai, M., Matsubara, H. and Ryu, I. (2004) Mizoroki-Heck Arylation of α, β-Unsaturated Acids with a Hybrid Fluorous Ether, F-626: Facile Filtrative Separation of Products and Efficient Recycling of a Reaction Medium Containing a Catalyst. The Journal of Organic Chemistry, 69, 8105-8107.
http://dx.doi.org/10.1021/jo049028+
[42] Zhu, M., Song, Y.L. and Cao, Y. (2007) A Fast and Convenient Heck Reaction in Water under Microwave Irradiation. Synthesis, 2007, 853-856.
http://dx.doi.org/10.1055/s-2007-965936
[43] Watanabe, T., Hayashi, K., Yoshimatsu, S. and Sakai, K. (1980) Studies of Hypolipidemic Agents. 1. Synthesis and Hypolipidemic Activities of Alkoxycinnamic acid Derivatives. Journal of Medicinal Chemistry, 23, 50-59.
[44] Kawamatsu, Y., Asakawa, H., Saraie, T., Imamiya, E., Nishikawa, K. and Hamuro, Y. (1980) Studies on Antihyperlipidemic Agents. II. Synthesis and Biological Activities of 2-Chloro-3-arylpropionic Acids. Arzneimittel Forschung, 30, 585-589.
[45] Ganushchak, N.I., Fedorovich, I.S., Obushak, N.D. and Prokopishin, I.Y. (1982) Reaction of Methyl Esters of Acrylic and Methacrylic Acids with Bisdiazotizedbenzidines and Their Analogs. Zhurnal Organicheskoi Khimii, 18, 1727-1732.
[46] King, F.D. and Caddick, S. (2013) The Triflic Acid-Mediated Cyclisation of N-Benzyl-Cinnamamides. Tetrahedron, 69, 487-491.
http://dx.doi.org/10.1016/j.tet.2012.11.035
[47] Lundberg, H., Fredrik, T. and Hans, A. (2012) Titanium(IV) Isopropoxide as an Efficient Catalyst for Direct Amidation of Nonactivated Carboxylic Acids. Synlett, 23, 2201-2204.
[48] Iranpoor, N., Firouzabadi, H., Motevalli, S. and Talebi, M. (2013) Palladium-Free Aminocarbonylation of Aryl, Benzyl, and Styryl Iodides and Bromides by Amines Using Mo(CO)6 and Norbornadiene. Tetrahedron, 69, 418-426.
[49] Wu, Y.J., He, H., Sun, L.Q., L’Heureux, A., Chen, J., Dextraze, P., Starrett Jr., J.E., Boissard, C.G., Gribkoff, V.K., Natale, J. and Dworetzky, S.I. (2004) Synthesis and Structure-Activity Relationship of Acrylamides as KCNQ2 Potassium Channel Openers. Journal of Medicinal Chemistry, 47, 2887-2896.
[50] Chen, C.-C., Ho, J.-C. and Chang, N.-C. (2008) A Practical and Efficient Synthesis of (E)-β-aryl-α,β-Unsaturated Amides. Tetrahedron, 64, 10350-10354.
[51] Pardin, C., Pelletier, J.N., Lubell, W.D. and Keillor, J.W. (2008) Cinnamoyl Inhibitors of Tissue Transglutaminase. The Journal of Organic Chemistry, 73, 5766-5775.
http://dx.doi.org/10.1021/jo8004843
[52] Fu, Z.Q., Lee, J., Kang, B. and Hong, S.H. (2012) Dehydrogenative Amide Synthesis: Azide as a Nitrogen Source. Organic Letters, 14, 6028-6031.
http://dx.doi.org/10.1021/ol302915g
[53] Metro, T.X., Bonnamour, J., Reidon, T., Sarpoulet, J., Martinez, J. and Lamaty, F. (2012) Mechanosynthesis of Amides in the Total Absence of Organic Solvent from Reaction to Product Recovery. Chemical Communications, 48, 11781-11783.
http://dx.doi.org/10.1039/c2cc36352f
[54] Thalluri, K., Nadimpally, K.C., Chakravarty, M.P., Paul, A. and Mandal, B. (2013) Ethyl 2-(tert-Butoxycarbonyloxyimino)-2-cyanoacetate (Boc-Oxyma) as Coupling Reagent for Racemization-Free Esterification, Thioesterification, Amidation and Peptide Synthesis. Advanced Synthesis & Catalysis, 355, 448-462.
http://dx.doi.org/10.1002/adsc.201200645
[55] Barajas, J.G.H., Mendez, L.Y.V., Kouznetsov, V.V. and Stashenko, E.E. (2008) Efficient Synthesis of New N-Benzyl-or N-(2-Furylmethyl)cinnamamides Promoted by the “Green” Catalyst Boric Acid, and Their Spectral Analysis. Synthesis, 2008, 377-382.
[56] Pizzetti, M., Russo, A. and Petricci, E. (2011) Microwave-Assisted Aminocarbonylation of Ynamides by Using Catalytic [Fe3(CO)12] at Low Pressures of Carbon Monoxide. Chemistry—A European Journal, 17, 4523-4528.
http://dx.doi.org/10.1002/chem.201100447
[57] Wu, J., Liu, Y. and Dai, W. (2008) Faming Zhuanli Shenqing Gongkai Shuomingshu. CN 101274901.