[1] Roher, A.E., Chaney, M.O., Kuo, Y.M., Webster, S.D., Stine, W.B., Haverkamp, L.J., Woods, A.S., Cotter, R,J., Tuohy, J.M., Krafft, G.A., Bonnell, B.S. and Emmerling, M.R. (1996) Morphology and Toxicity of Abeta-(1-42) Dimer Derived from Neuritic and Vascular Amyloid Deposits of Alzheimer’s Disease. The Journal of Biological Chemistry, 271, 20631-20635.
http://dx.doi.org/10.1074/jbc.271.34.20631
[2] Klein, W.I., Krafft, G.A. and Finch, C.E. (2001) Targeting Small Aβ Oligomers: The Solution to an Alzheimer’s Conundrum. Trends in Neurosciences, 24, 219-224.
http://dx.doi.org/10.1016/S0166-2236(00)01749-5
[3] Dahlgren, K.W., Manelli, A.M., Stine, W.B., Baker, L.K., Kraft, G.K. and LaDu, M.J. (2002) Oligomeric and Fibrillar Species of Amyloid-Beta Peptide Differentially Affect Neuronal Viability. The Journal of Biological Chemistry, 277, 32046-32053.
http://dx.doi.org/10.1074/jbc.M201750200
[4] Kayed, R., Head, E., Thompson, J.L., Mcintire, T.M., Milton, S.C., Cotman, C.W. and Glabe, C.G. (2003) Common Structure of Soluble Amyloid Oligomers Implies Common Mechanism of Pathogenesis. Science, 300, 486-489.
http://dx.doi.org/10.1126/science.1079469
[5] Hsia, A.Y., et al. (1999) Plaque-Independent Disruption of Neural Circuits in Alzheimer’s Disease Mouse Models. Proceedings of the National Academy of Sciences of the United States of America, 96, 3228-3233.
http://dx.doi.org/10.1073/pnas.96.6.3228
[6] Chapman, P.F., et al. (1999) Impaired Synaptic Plasticity and Learning in Aged Amyloid Precursor Protein Transgenic Mice. Nature Neuroscience, 2, 271-276.
http://dx.doi.org/10.1038/6374
[7] Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J. and Selkoe, D.J. (2002) Naturally Secreted Oligomers of Amyloid β Protein Potently Inhibit Hippocampal Long-Term Potentiation in Vivo. Nature, 41, 535-539.
http://dx.doi.org/10.1038/416535a
[8] Hardy, J. and Selkoe, D.J., (2002) The Amyloid Hypothesis of Alzheimer’s Disease: Progress and Problems on the Road to Therapeutics. Science, 297, 353-356.
http://dx.doi.org/10.1126/science.1072994
[9] Cerf, E., et al. (2007) Antiparallel β-Sheet: A Signature Structure of the Oligomeric Amyloid β-Peptide. Biochemical Journal, 421, 415-423.
http://dx.doi.org/10.1042/BJ20090379
[10] Carnini, A., Lear, J.D. and Eckenhoff, R.G. (2007) Inhaled Anesthetic Modulation of Amyloid Aβ1-40 Assembly and Growth. Current Alzheimer Research, 4, 233-241.
http://dx.doi.org/10.2174/156720507781077278
[11] Bohnen, N.I., Warner, M.A., Kokmen, E., Beard, C.M. and Kurland, L.T. (1994) Alzheimer-Disease and Cumulative Exposure to Anesthesia—A Case-Control Study. Journal of the American Geriatrics Society, 42, 198-201.
[12] Muravchick, S. and Smith, D.S. (1995) Parkinsonian Symptoms during Emergence from General-Anesthesia. Anesthesiology, 82, 305-307.
http://dx.doi.org/10.1097/00000542-199501000-00039
[13] Surewicz, W.K., Mantsch, H.H. and Chapman, D. (1993) Determination of Protein Secondary Structure by Fourier Transform Infrared Spectroscopy: A Critical Assessment. Biochemistry, 32, 389-394.
http://dx.doi.org/10.1021/bi00053a001
[14] Stephanos, J.J. and Inorg, J. (1996) Drug-Protein Interactions. Two-Site Binding of Heterocylclic Ligands to a Monomeric Hemoglobin. Journal of Inorganic Biochemistry, 62, 155-169.
http://dx.doi.org/10.1016/0162-0134(95)00144-1
[15] Klotz, M.I. and Hunston, L.D. (1971) Properties of Graphical Representations of Multiple Classes of Binding Sites. Biochemistry, 10, 3065-3069.
http://dx.doi.org/10.1021/bi00792a013
[16] Klotz, M.I. (1982) Numbers of Receptor Sites from Scatchard Graphs: Facts and Fantasies. Science, 217, 1247-1249.
http://dx.doi.org/10.1126/science.6287580
[17] Bhattacharya, A.A., Gruene, T. and Curry, S. (2000) Crystallographic Analysis Reveals Common Modes of Binding of Medium and Long-Chain Fatty Acids to Human Serum Albumin. Journal of Molecular Biology, 303, 721-732.
http://dx.doi.org/10.1006/jmbi.2000.4158
[18] Purcell, M., Neault, J.F. and Tajmir-Riahi, H.A. (2000) Interaction of Taxol with Human Serum Albumin. Biochimica et Biophysica Acta, 1478, 61-68.
http://dx.doi.org/10.1016/S0167-4838(99)00251-4
[19] Sarroukh, R., Cerf, E., Derclaye, S., Dufrêne, Y.F., Goormaghtigh, E., Ruysschaert, J.-M. and Raussens, V. (2011) Transformation of Amyloid β(1-40) Oligomers into Fibrils Is Characterized by a Major Change in Secondary Structure. Cell. Cellular and Molecular Life Sciences, 68, 1429-1438.
http://dx.doi.org/10.1007/s00018-010-0529-x
[20] Amaro, M., Kubiak-Ossowska, K., Birch, D.J.S. and Rolinski, O.J. (2013) Initial Stages of Beta-Amyloid Aβ1-40 and Aβ1-42 Oligomerization Observed Using Fluorescence Decay and Molecular Dynamics Analyses of Tyrosine. Methods and Applications in Fluorescence, 1, Article ID: 015006.
http://dx.doi.org/10.1088/2050-6120/1/1/015006
[21] Turro, N.J. (1991) Modern Molecular Photochemistry. University Science Books, Sausalito.
[22] Jianghong, T., Ning, L., Xianghong, H. and Guohua, Z. (2008) Investigation of the Interaction between Sophoricoside and Human Serum Albumin by Optical Spectroscopy and Molecular Modeling Methods. Journal of Molecular Structure, 889, 408-414.
http://dx.doi.org/10.1016/j.molstruc.2008.02.031
[23] Li, J., Ren, C., Zhang, Y., Liu, X., Yao, X. and Hu, Z. (2008) Human Serum Albumin Interaction with Honokiol Studied Using Optical Spectroscopy and Molecular Modeling Methods. Journal of Molecular Structure, 881, 90-96.
http://dx.doi.org/10.1016/j.molstruc.2007.08.039
[24] Sheehan, D. (2009) Physical Biochemistry: Principles and Applications. 2nd Edition, John Wiley & Sons, Hoboken.
[25] Tian, J.N., Liu, J.Q., Zhang, J.Y., Hu, Z.D. and Chen, X.G. (2003) Fluorescence Studies on the Interactions of Barbaloin with Bovine Serum Albumin. Chemical & Pharmaceutical Bulletin, 51, 579-582.
http://dx.doi.org/10.1248/cpb.51.579
[26] Lakowicz, J.R. (2006) Principles of Fluorescence Spectroscopy. 3rd Edition, Springer Science, New York.
[27] Kong, J. and Yu, S. (2007) Fourier Transform Infrared Spectroscopic Analysis of Protein Secondary Structures. Acta Biochimica et Biophysica Sinica, 39, 549-559.
http://dx.doi.org/10.1111/j.1745-7270.2007.00320.x
[28] Darwish, S.M., Ghithan, J., Abuteir, M.M., Faroun, M. and Abu-Hadid, M.M. (2013) Spectroscopic Investigation of Pentobarbital Interaction with Transthyretin. Journal of Spectroscopy, 2013, Article ID: 927962.
[29] Wang, H., Duennwald, M.L., Roberts, B.E., Rozeboom, L.M., Zhang, Y.L., Steele, A.D., et al. (2008) Direct and Selective Elimination of Specific Prions and Amyloids by 4,5-Dianilinophthalimide and Analogs. Proceedings of the National Academy of Sciences, 105, 7159-7164.
http://dx.doi.org/10.1073/pnas.0801934105
[30] Cordeiro, Y., Kraineva, J., Suarez, M.C., Tempesta, A.G., Kelly, J.W., Silva, J.L., Winter, R. and Foguel, D. (2006) Fourier Transform Infrared Spectroscopy Provides a Fingerprint for the Tetramer and for the Aggregates of Transthyretin. Biophysical Journal, 91, 957-967.
http://dx.doi.org/10.1529/biophysj.106.085928
[31] Sulkowaska, A. (2002) Interaction of Drugs with Bovine and Human Serum Albumin. Journal of Molecular Structure, 614, 227-232.
http://dx.doi.org/10.1016/S0022-2860(02)00256-9
[32] Garzon-Rodriguez, W., Vega, A., Sepulveda-Becerra, M., Milton, S., Johnson, D.A., Yatsimirsky, A.K. and Glabe, C.G. (2000) A Conformation Change in the Carboxyl Terminus of Alzheimer’s Aβ(1-40) Accompanies the Transition from Dimer to Fibril as Revealed by Fluorescence Quenching Analysis. Journal of Biological Chemistry, 275, 22645-22649.
http://dx.doi.org/10.1074/jbc.M000756200
[33] Sirotkin, V.A., Zinatullin, A.N., Solomonov, B.N., Faizullin, D.A. and Fedotov, V.D. (2001) Calorimetric and Fourier transform Infrared Spectroscopic Study of Solid Proteins Immersed in Low Water Organic Solvents. Biochimica et Biophysica Acta, 1547, 359-369.
http://dx.doi.org/10.1016/S0167-4838(01)00201-1
[34] Zandomeneghi, G., Krebs, M.R.H., Mccammon, M.G. and Fandrichi, M. (2004) FTIR Reveals Structural Differences between Native b-Sheet Proteins and Amyloid Fibrils. Protein Science, 13, 3314-3321.
http://dx.doi.org/10.1110/ps.041024904
[35] Shan-Yang, L. and Horng-Lun, C. (2003) Fourier Transform Infrared Spectroscopy Used to Evidence the Prevention of β-Sheet Formation of Amyloid β(1-40) Peptide by a Short Amyloid Fragment. International Journal of Biological Macromolecules, 32, 173-177.
http://dx.doi.org/10.1016/S0141-8130(03)00051-5
[36] Perczel, A., Gáspári, Z. and Csizmadia, I.G. (2005) Structure and Stability of β-Pleated Sheets. Journal of Computational Chemistry, 26, 1155-1168.
http://dx.doi.org/10.1002/jcc.20255
[37] Irie, K., Murakami, K., Masuda, Y., Morimoto, A., Ohigashi, H., Ohashi, R., et al. (2005) Structure of Beta-Amyloid Fibrils and Its Relevance to Their Neurotoxicity: Implications for the Pathogenesis of Alzheimer’s Disease. Journal of Bioscience and Bioengineering, 99, 437-447.
[38] Perczel, A., Gáspári, Z. and Csizmadia, I.G. (2005) Structure and Stability of β-Pleated Sheets. Journal of Computational Chemistry, 26, 1155-1168.
http://dx.doi.org/10.1002/jcc.20255
[39] Juszczyk, P., Kolodziejczyk, A.S. and Grzonka, Z. (2009) FTIR Spectroscopic Studies on Aggregation Process of the β-Amyloid 11-28 Fragment and Its Variants. Journal of Peptide Science, 15, 23-29.
http://dx.doi.org/10.1002/psc.1085
[40] Lomaki, A., Chung, D.S., Benedek, G.B., Kirschner, D.A. and Teplow, D.B. (1996) On the Nucleation and Growth of Amyloid β-Protein Fibrils: Detection of Nuclei and Quantitation of Rate Constants. Proceedings of the National Academy of Sciences of the United States of America, 93, 1125-1129.
http://dx.doi.org/10.1073/pnas.93.3.1125
[41] Eckenhoff, R.G., Johansson, J.S., Wei, H.F., Carnini, A., Kang, B.B., Wei, W.L., et al. (2004) Inhaled Anesthetic Enhancement of Amyloid-Oligomerization and Cytotoxicity. Anesthesiology, 101, 703-709.
http://dx.doi.org/10.1097/00000542-200409000-00019
[42] Hashimoto, M., Rockenstein, E., Crews, L. and Masliah, E. (2003) Role of Protein Aggregation in Mitochondrial Dysfunction and Neurodegeneration in Alzheimer’s and Parkinson’s Diseases. NeuroMolecular Medicine, 4, 21-36.
http://dx.doi.org/10.1385/NMM:4:1-2:21
[43] Mandal, P.K., Bhavesh, N.S., Chauhan, V.S. and Fodale, V. (2010) NMR Investigations of Amyloid-β Peptide Interactions with Propofol at Clinically Relevant Concentrations with and without Aqueous Halothane Solution. Journal of Alzheimer’s Disease, 21, 1303-1309.
[44] Lindgren, M. and Hammarstrom, P. (2010) Amyloid Oligomers: Spectroscopic Characterization of Amyloidogenic Protein States. FEBS Journal, 277, 1380-1388.
http://dx.doi.org/10.1111/j.1742-4658.2010.07571.x
[45] Murphy, M.R. (2002) Peptide Aggregation in Neurodegenerative Disease. Annual Review of Biomedical Engineering, 4, 155-174.
http://dx.doi.org/10.1146/annurev.bioeng.4.092801.094202
[46] Kirkitadze, M.D., Condron, M.M. and Teplow, D.B. (2001) Identification and Characterization of Key Kinetic Intermediates in Amyloid Beta-Protein Fibrillogenesis. Journal of Molecular Biology, 312, 1103-1119.
http://dx.doi.org/10.1006/jmbi.2001.4970