WJNST  Vol.5 No.2 , April 2015
Radiolanthanides Device Production
ABSTRACT
149Pm, 166Ho, 161Tb and 177Lu conjugated to chemical agents (monoclonal antibodies, polypeptide, etc.) have the appropriate decay characteristics for imaging and therapeutic studies and consequently the potential to be useful in radiotherapy and diagnosis. These carrier-free radioisotopes can be produced by neutron irradiation of a lanthanide target followed by β- decay, and a posterior radiochemical separation of the daughter radionuclide from macro-amounts of the parent target. In order to produce carrier free 149Pm, 161Tb, 166Ho and 177Lu for radiotherapy, with a radionuclide purity of more than 99.9%, a device production was developed based on separation of Nd/Pm, Gb/Tb, Dy/Ho and Yb/Lu by extraction chromatography.

Cite this paper
Monroy-Guzman, F. , Barreiro, F. , Salinas, E. and Treviño, A. (2015) Radiolanthanides Device Production. World Journal of Nuclear Science and Technology, 5, 111-119. doi: 10.4236/wjnst.2015.52011.
References
[1]   Anderson, C.J. and Welch, M.J. (1999) Radiometal-Labeled Agents (Non-Technetium) for Diagnostic Imaging. Chemical Reviews, 99, 2219-2234.
http://dx.doi.org/10.1021/cr980451q

[2]   Nayak, D. and Lahiri, S. (1999) Application of Radioisotopes in the Field of Nuclear Medicine: I. Lanthanide Series Elements. Journal of Radioanalytical and Nuclear Chemistry, 242, 423-432.
http://dx.doi.org/10.1007/BF02345573

[3]   Volkert, W.A. and Hoffman, T.J. (1999) Therapeutic Radiopharmaceuticals. Chemical Reviews, 99, 2269-2292.
http://dx.doi.org/10.1021/cr9804386

[4]   Unak, P. (2002) Targeted Tumor Radiotherapy. Brazilian Archives of Biology and Technology, 45, 97-110.
http://dx.doi.org/10.1590/S1516-89132002000500014

[5]   Ehrhardt, G.J., Ketring, A.R. and Ayers, L.M. (1998) Reactor-Produced Radionuclides at the University of Missouri Research Reactor. Applied Radiation and Isotopes, 49, 295-297.
http://dx.doi.org/10.1016/S0969-8043(97)00038-9

[6]   Smith, C.J., Volkert, W.A. and Hoffman, T.J. (2005) Radiolabeled Peptide Conjugates for Targeting of the Bombesin Receptor Superfamily Subtypes. Nuclear Medicine and Biology, 32, 733-740.
http://dx.doi.org/10.1016/j.nucmedbio.2005.05.005

[7]   Evans, C.H. (1983) Interesting and Useful Biochemical Properties of Lanthanides. TIBS, 445-449.
http://dx.doi.org/10.1016/0968-0004(83)90032-4

[8]   Sturza, C.M., Boscencu, R. and Nacea, V. (2010) The Lanthanides: Physicochemical Properties Relevant for Their Biomedical Applications. ChemInform, 41, 26.
http://dx.doi.org/10.1002/chin.201026245

[9]   Uusijarvi, H., Bernhardt, P., Rosch, F., Maecke, H.R. and Forssell-Aronsson, E. (2006) Electron- and Positron-Emitting Radiolanthanides for Therapy: Aspects of Dosimetry and Production. Journal of Nuclear Medicine, 47, 807-814.

[10]   Milenic, D.E., Garmestani, K., Chappell Lara, L., Dadachova, E., Yordanov, A., Ma, D.S., Schlom, J. and Brechbiel, M.W. (2002) In Vivo Comparison of Macrocyclic and Acyclic Ligands for Radiolabeling of Monoclonal Antibodies with 177Lu for Radioimmunotherapeutic Applications. Nuclear Medicine and Biology, 29, 431-442.
http://dx.doi.org/10.1016/S0969-8051(02)00294-9

[11]   Lehenberger, S., Barkhausen, C., Cohrs, S., Fischer, E., Grunberg, J., Hohn, A., Koster, U., Schibli, R., Turler, A. and Zhernosekov, K. (2011) The Low-Energy β- and Electron Emitter 161Tb as an Alternative to 177Lu for Targeted Radionuclide Therapy. Nuclear Medicine and Biology, 38, 917-924.
http://dx.doi.org/10.1016/j.nucmedbio.2011.02.007

[12]   Louw, W.K.A., Dormehl, I.C., van Rensburg, A.J., Hugo, N., Alberts, A.S., Forsyth, O.E., Beverley, G., Sweetlove, M.A., Marais, J., Lotter, M.G. and Van Aswegen, A. (1996) Evaluation of Samarium-153 and Holmium-166-EDTMP in the Normal Baboon Model. Nuclear Medicine and Biology, 23, 935-940.
http://dx.doi.org/10.1016/S0969-8051(96)00117-5

[13]   Abbasi, I.A. (2011) Studies on 177Lu-Labeled Methylene Diphosphonate as Potential Bone-Seeking Radiopharmaceutical for Bone Pain Palliation. Nuclear Medicine and Biology, 38, 417-425.
http://dx.doi.org/10.1016/j.nucmedbio.2010.09.013

[14]   Wunderlich, G., Schiller, E., Bergmann, R. and Pietzsch, H.J. (2010) Comparison of the Stability of Y-90-, Lu-177- and Ga-68-Labeled Human Serum Albumin Microspheres (DOTA-HSAM). Nuclear Medicine and Biology, 37, 861-867.
http://dx.doi.org/10.1016/j.nucmedbio.2010.05.004

[15]   Borson-Chazot, F. (2006) Radiotherapie metabolique des tumeurs endocrines gastro-entero-pancreatiques par les analogues radio-marques de la somatostatine. Annales d’Endocrinologie, 67, 198-204.
http://dx.doi.org/10.1016/S0003-4266(06)72587-2

[16]   Claringbold, P., Brayshaw, P., Price, R. and Turner, J.H. (2011) 6605 POSTER Phase l-ll Study of Radiopeptide 177Lu-Octreotate in Combination with Capecitabine and Temozolomide in Advanced Low-Grade Neuroendocrine Tumours. European Journal of Cancer, 41, S473.
http://dx.doi.org/10.1016/S0959-8049(11)71916-5

[17]   Mansi, R., Dumont, R.A., Tamma, M.L., Deininger, F., Borkowski, S., Maecke, H.R. and Weber, W.A. (2011) 7037 POSTER Radiopeptide Therapy of Prostate Cancer LU-177-RM2 (BAY 1017858) Monotherapy and in Combination with PKI Inhibitors. European Journal of Cancer, 47, S495.

[18]   Yordanov, A.T., Hens, M., Pegram, C., Bigner, D.D. and Zalutsky, M.R. (2007) Antitenascin Antibody 81C6 Armed with 177Lu: In Vivo Comparison of Macrocyclic and Acyclic Ligands. Nuclear Medicine and Biology, 34, 173-183.
http://dx.doi.org/10.1016/j.nucmedbio.2006.11.003

[19]   Chen, J.Q., Linder, K.E., Cagnolini, A., Metcalfe, E., Raju, N., Tweedle, M.F. and Swenson, R.E. (2008) Synthesis, Stabilization and Formulation of [177Lu]Lu-AMBA, a Systemic Radiotherapeutic Agent for Gastrin Releasing Peptide Receptor Positive Tumors. Applied Radiation and Isotopes, 66, 497-505.
http://dx.doi.org/10.1016/j.apradiso.2007.11.007

[20]   Koumarianou, E., Mikolajczak, R., Pawlak, D., Zikos, X., Bouziotis, P., Garnuszek, P., Karczmarczyk, U., Maurin, M. and Archimandritis, S.C. (2009) Comparative Study on DOTA-Derivatized Bombesin Analog Labeled with 90Y and 177Lu: In Vitro and in Vivo Evaluation. Nuclear Medicine and Biology, 36, 591-603.
http://dx.doi.org/10.1016/j.nucmedbio.2009.03.006

[21]   Hens, M., Vaidyanathan, G., Zhao, X.-G., Bigner, D.D. and Zalutsky, M.R. (2010) Anti-EGFRvIII Monoclonal Antibody Armed with 177Lu: In Vivo Comparison of Macrocyclic and Acyclic Ligands. Nuclear Medicine and Biology, 37, 741-750.
http://dx.doi.org/10.1016/j.nucmedbio.2010.04.020

[22]   Hens, M., Vaidyanathan, G., Welsh, P. and Zalutsky, M.R. (2009) Labeling Internalizing Anti-Epidermal Growth Factor Receptor Variant III Monoclonal Antibody with 177Lu: In Vitro Comparison of Acyclic and Macrocyclic Ligands. Nuclear Medicine and Biology, 36, 117-128.
http://dx.doi.org/10.1016/j.nucmedbio.2008.11.001

[23]   Park, K.B., Kim, J.R. and Lambrecht, R. (1996) Preparation of Dysprosium-165/Holmium-166 Macroaggregate for Radiation Synovectomy. Journal of Radioanalytical and Nuclear Chemistry, 206, 5-16.
http://dx.doi.org/10.1007/BF02040036

[24]   Makela, O., Penttila, P., Kolehmainen, E., Sukura, A., Sankari, S. and Tulamo, R.M. (2002) Experimental Radiation Synovectomy in Rabbit Knee with Holmium-166 Ferric Hydroxide Macroaggregate. Nuclear Medicine and Biology, 29, 593-598.
http://dx.doi.org/10.1016/S0969-8051(02)00317-7

[25]   Lee, T.-H., Cho, Y.-H., Lee, J.D., Yang, W.I., Shin, J.L. and Lee, M.-G. (2006) Enhanced Antitumor Effect of Dendritic Cell Based Immunotherapy after Intratumoral Injection of Radionuclide Ho-166 against B16 Melanoma. Immunology Letters, 106, 19-26.
http://dx.doi.org/10.1016/j.imlet.2006.03.007

[26]   Pedraza-Lopez, M., Ferro-Flores, G., de Murphy C.A., Morales-Ramírez, P., Piedras-Rosas, J., Murphy-Stack, E. and Hernandez-Oviedo, O. (2004) Cytotoxic and Genotoxic Effect of the [166Dy]Dy/166Ho-EDTMP in Vivo Generator System in Mice. Nuclear Medicine and Biology, 31, 1079-1085.
http://dx.doi.org/10.1016/j.nucmedbio.2004.08.010

[27]   Won, J.H., Lee, J.D., Wang, H.J., Han, J.H., Kim, J.H., Kim, K.-H., Itkin, M. and Park, K.B. (2005) Effects of a Holmium-166 Incorporated Covered Stent Placement in Normal Canine Common Bile Ducts. Journal of Vascular and Interventional Radiology, 16, 705-711.

[28]   Hu, F., Cutler, C.S., Hoffman, T., Sieckman, G., Volkert, W.A. and Jurisson, S.S. (2002) Pm-149 DOTA Bombesin Analogs for Potential Radiotherapy: In Vivo Comparison with Sm-153 and Lu-177 Labeled DO3A-Amide-βAla-BBN(7-14)NH2. Nuclear Medicine and Biology, 29, 423-430.
http://dx.doi.org/10.1016/S0969-8051(02)00290-1

[29]   Engelbrecht, H., Forbis, L., Liu, S., Lewis, M., Lever, J., Watkinson, L., Carmack, T., Ketring, A. and Cutler, C. (2007) Biodistribution Studies Conducted with Pm-149 and Lu-177-DOTA-Conjugated Vitronectin Receptor (αvβ3) Antagonist-RGD. Journal of Nuclear Medicine, 48, 296.

[30]   Godoy, N.O., Pinto, L.N. and Avila, M.J. (2002) The Ho-166 and Lu-177 Production for Nuclear Medicine Applications at the RECH-1. Alasbimn Journal, 5, 1-2.

[31]   Ketring, R., Ehrhardt, G.J., Embree, M.F., Bailey, K.D., Tyler, T.T., Gawenis, J.A., Jurisson, S.S., Engelbrecht, H.P., Smith, C.J. and Cuttler, C.S. (2003) Production and Supply of High Specific Activity Radioisotopes for Radiotherapy Applications. Alasbimn Journal, 5, 1-6.

[32]   Ferro-Flores, G., de Murphy C.A., Pedraza-Lopez, M., Monroy-Guzman, F., Melendez-Alafort, L., Tendilla, J.I. and Jimenez-Varela, R. (2003) Labeling of Biotin with [166Dy]Dy/166Ho as a Stable in Vivo Generator System. International Journal of Pharmaceutics, 255, 129-138.
http://dx.doi.org/10.1016/S0378-5173(03)00052-8

[33]   Lebedev, N.A., Novgorodov, A.F., Misiak, R., Brockmann, J. and Rosch, F. (2000) Radiochemical Separation of No-Carrier-Added 177Lu as Produced via the 176Yb(n,γ)177Yb→177Lu Process. Applied Radiation and Isotopes, 53, 421-425.
http://dx.doi.org/10.1016/S0969-8043(99)00284-5

[34]   Roig, O., Belier, G., Daugas, J.M., Delbourgo, P., Maunoury, L., Meot, V., Morichon, E., Sauvestre, J.E., Aupiais, J., Boulin, Y., Fioni, G., Letourneau, A., Marie, F. and Ridikas, D. (2004) High Spin K Isomeric Target of 177mLu. Nuclear Instruments and Methods in Physics Research Section A, 521, 5-11.
http://dx.doi.org/10.1016/j.nima.2003.11.140

[35]   Dadachova, E., Mirzadeh, S., Smith, S.V., Knapp, F.F. and Hetherington, E.L. (1997) Radiolabeling Antibodies with Holmium-166. Applied Radiation and Isotopes, 48, 477-481.
http://dx.doi.org/10.1016/S0969-8043(96)00269-2

[36]   Pillai, M.R.A., Chakraborty, S., Das, T., Venkatesh, M. and Ramamoorthy, N. (2003) Production Logistics of 177Lu for Radionuclide Therapy. Applied Radiation and Isotopes, 59, 109-118.
http://dx.doi.org/10.1016/S0969-8043(03)00158-1

[37]   Dadachova, E., Mirzadeh, S., Lambrecht, R.M., Hetherington, E.L. and Knapp Jr., F.F. (1994) Separation of Carrier-Free Holmium-166 from Neutron-Irradiated Dysprosium Targets. Analytical Chemistry, 66, 4272-4277.
http://dx.doi.org/10.1021/ac00095a024

[38]   Horwitz, E.P., Bloomquist, C.A.A. and Delphin, W.H. (1977) Radiochemical Separations by Liquid-Liquid Chromatography Using PSM Support. Journal of Chromatographic Science, 15, 41-46.
http://dx.doi.org/10.1093/chromsci/15.2.41

[39]   Horwitz, E.P. and Bloomquist, C.A.A. (1975) Chemical Separations for Super-Heavy Element Searches in Irradiated Uranium Targets. Journal of Inorganic and Nuclear Chemistry, 37, 425-434.
http://dx.doi.org/10.1016/0022-1902(75)80350-2

[40]   Schweitzer, G.K. and Pesterfield, L.L. (2010) The Aqueous Chemistry of the Elements. Oxford University Press, New York.

 
 
Top