JMP  Vol.6 No.5 , April 2015
Gravitation and Electromagnetism Conciliated Following Einstein’s Program
Author(s) Claude Elbaz*
The Einstein’s program permits to conciliate gravitation and electromagnetism. Besides the standard model, it forms a consistent system for universe description, founded upon a scalar field propagating at the speed of light c. Matter corresponds to standing waves. Adiabatic variations of frequencies lead to electromagnetic interaction constituted by progressive waves. Classical domain corresponds to geometrical optics approximation, when frequencies are infinitely high, and then hidden. As interactions for matter, Gravitation and Electromagnetism derive from variations of its energy E = mc2. Electromagnetic interaction energy derives from mass variation dE = c2dm, and gravitation from speed of light variation dE = mdc2. Contrarily to gravitation, only electromagnetic interaction serves as a bridge between classical and quantum frames, since it leans directly upon the wave property of matter: its energy dE = hdν = c2dm derives from variations of matter energy E = hν = mc2.

Cite this paper
Elbaz, C. (2015) Gravitation and Electromagnetism Conciliated Following Einstein’s Program. Journal of Modern Physics, 6, 660-669. doi: 10.4236/jmp.2015.65072.
[1]   Einstein, A. and Infeld, L. (1938) The Evolution of Physics. Cambridge University Press, Cambridge, 228-232.

[2]   Einstein, A. (1936) Journal of Franklin Institute, 221, 349-382.

[3]   Einstein, A. (1929) Einstein’s Theory of Relativity.

[4]   Einstein, A. (1920) The Aether and Relativity Theory. Leyde University, Leyde.

[5]   Einstein, A. (1949) Philosopher, Scientist. Cambridge University Press, London.

[6]   Hello. P. (2008) Classical and Quantum Gravity, 25, Article ID: 035002.

[7]   Blanchet, L. (2009) Gravite Modifiee ou Matiere Modifiee?

[8]   Elbaz, C. (2014) Journal of Modern Physics, 5, 2192-2199.

[9]   Elbaz, C. (1987) Journal of Physics A: Mathematical and General, 20, L279-L282.

[10]   Elbaz, C. (2013) Annales de la Fondation Louis de Broglie, 38, 195-217.

[11]   Elbaz, C. (2010) Asymptotic Analysis, 68, 77-88.

[12]   Elbaz, C. (2012) Discrete and Continuous Dynamical Systems, A.I.M.S, Series B, 17, 835-849.

[13]   Dimarcq, N. (2013) La mesure du temps.

[14]   Dimarcq, N. (2014) Academie Eurpeenne Interdisciplinaire de Sciences, 187, 4.

[15]   Salomon, C. (2014) La mesure du temps et les tests de la relativite. ENS, LKB.

[16]   Salomon, C. (2007) Quand les constantes n’en sont plus. CNES. E-Espace et Science.

[17]   Landau, L. and Lifchitz, E. (1960) Mechanics. Pergamon.

[18]   Landau, L. and Lifchitz, E. (1962) The Classical Theory of Fields. Pergamon.

[19]   Born, M. and Wolf, E. (1970) Principles of Optics. Pergamon, 3.

[20]   Einstein, A. (1912) Annal der Physik, 4, 355, 369.