[1] Harman, H.H. (1976) Modern Factor Analysis. 3rd Edition, The University of Chicago Press, Chicago.
[2] Mulaik, S.A. (2010) Foundations of Factor Analysis. 2nd Edition, CRC Press, Boca Raton.
[3] Yanai, H. and Ichikawa, M. (2007) Factor Analysis. In: Rao, C.R. and Sinharay, S., Eds., Handbook of Statistics, Vol. 26: Psychometrics, Elsevier, Amsterdam, 257-296.
[4] Anderson, T.W. and Rubin, H. (1956) Statistical Inference in Factor Analysis. In: Neyman, J., Ed., Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, Vol. 5, University of California Press, Berkeley, 111-150.
[5] Lange, K. (2010) Numerical Analysis for Statisticians. 2nd Edition, Springer, New York.
[6] ten Berge, J.M.F. (1993) Least Squares Optimization in Multivariate Analysis. DSWO Press, Leiden.
[7] Jöreskog, K.G. (1967) Some Contributions to Maximum Likelihood Factor Analysis. Psychometrika, 32, 443-482.
http://dx.doi.org/10.1007/BF02289658
[8] Jennrich, R.I. and Robinson, S.M. (1969) A Newton-Raphson Algorithm for Maximum Likelihood Factor Analysis. Psychometrika, 34, 111-123.
http://dx.doi.org/10.1007/BF02290176
[9] Jöreskog, K.G. and Goldberger, A.S. (1972) Factor Analysis by Generalized Least Squares. Psychometrika, 37, 243-250.
http://dx.doi.org/10.1007/BF02306782.
[10] Lee, S.Y. (1978) The Gauss-Newton Algorithm for the Weighted Least Squares Factor Analysis. Journal of the Royal Statistical Society: Series D (The Statistician), 27, 103-114.
http://dx.doi.org/10.2307/2987906
[11] Harman, H.H. and Jones, W.H. (1966) Factor Analysis by Minimizing Residuals (Minres). Psychomerika, 31, 351-369.
http://dx.doi.org/10.1007/BF02289468
[12] Rubin, D.B. and Thayer, D.T. (1982) EM Algorithms for ML Factor Analysis. Psychometrika, 47, 69-76.
http://dx.doi.org/10.1007/BF02293851
[13] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, Series B, 39, 1-38.
[14] Groenen, P.J.F. (1993) The Majorization Approach to Multidimensional Scaling: Some Problems and Extensions. DSWO Press, Leiden.
[15] Unkel, S. and Trendafilov, N.T. (2010) A Majorization Algorithm for Simultaneous Parameter Estimation in Robust Exploratory Factor Analysis. Computational Statistics and Data Analysis, 54, 3348-3358.
http://dx.doi.org/10.1016/j.csda.2010.02.003
[16] Unkel, S. and Trendafilov, N.T. (2010) Simultaneous Parameter Estimation in Exploratory Factor Analysis: An Expository Review. International Statistical Review, 78, 363-382.
http://dx.doi.org/10.1111/j.1751-5823.2010.00120.x
[17] Adachi, K. (2012) Some Contributions to Data-Fitting Factor Analysis with Empirical Comparisons to Covariance-Fitting Factor Analysis. Journal of the Japanese Society of Computational Statistics, 25, 25-38.
http://dx.doi.org/10.5183/jjscs.1106001_197
[18] Kiers, H.A.L. and ten Berge, J.M.F. (1992) Minimization of a Class of Matrix Trace Functions by Means of Refined Majorization. Psychometrika, 57, 371-382.
http://dx.doi.org/10.1007/BF02295425
[19] Kiers, H.A.L. (1990) Majorization as a Tool for Optimizing a Class of Matrix Functions. Psychometrika, 55, 417-428.
http://dx.doi.org/10.1007/BF02294758
[20] Costa, P.T. and McCrae, R.R. (1992) NEO PI-R Professional Manual: Revised NEO Personality Inventory (NEO PI-R) and NEO Five-Factor Inventory (NEO-FFI). Psychological Assessment Resources, Odessa, FL.
[21] Kaiser, H.F. (1958) The Varimax Criterion for Analytic Rotation in Factor Analysis. Psychometrika, 23, 187-200.
http://dx.doi.org/10.1007/BF02289233
[22] Gower, J.C. and Dijksterhuis, G.B. (2004) Procrustes Problems. Oxford University Press, Oxford.
http://dx.doi.org/10.1093/acprof:oso/9780198510581.001.0001
[23] Adachi, K. (2013) Factor Analysis with EM Algorithm Never Gives Improper Solutions When Sample Covariance and Initial Parameter Matrices Are Proper. Psychometrika, 78, 380-394.
http://dx.doi.org/10.1007/s11336-012-9299-8