AS  Vol.6 No.4 , April 2015
Composting Onion (Allium cepa) Wastes with Alfalfa (Medicago sativa L.) and Cattle Manure Assessment
Abstract: There is growing interest in the potential for using composts in agricultural and horticultural field crops. The aim of this study is to test the mixture efficiency to produce good quality compost. This paper presents a comprehensive analysis of recycling organic wastes through composting. In an area of approximately 1500 ha, situated in the lower valley of the Rio Negro (Black River), onions are produced. 50% of these onions are processed under Good Agricultural Practices (GAP) and under Good Manufacturing Practices (GMP). The packaging for marketing in processing plants has produced huge volumes of wastes that must be managed according to quality standards. These are composed by scales, roots and leaves, with high C/N ratio. In this study the composting process was studied as a way to recycle ecological and cheap onion waste in order to minimize their environmental impact. The onion residues were mixed with alfalfa and cattle manure. An experiment was carried out in order to determine suitable quality compost (organic product high agronomic value). In order to achieve the objectives, composting processes were carried out in two consecutive years. During the process, some physical, chemical and biological properties of the final product were analyzed and evaluated. The mixtures: OMA, onion-manure-alfalfa; OM, onion-manure; OA, onion-alfalfa, showed a similar behavior. The mixtures more efficient were onion-manure and onion-manure-alfalfa with values close to 50%, while onion-alfalfa yielded only 34%. Reuse of onion waste by composting mixed with cattle manure, is a viable alternative in ecological terms. The final compost obtained could be used as amendment in agriculture practices.
Cite this paper: Pellejero, G. , Miglierina, A. , Aschkar, G. and Jiménez-Ballesta, R. (2015) Composting Onion (Allium cepa) Wastes with Alfalfa (Medicago sativa L.) and Cattle Manure Assessment. Agricultural Sciences, 6, 445-455. doi: 10.4236/as.2015.64044.

[1]   López-Carmelo, A., Horvitz, S. and Gómez, P.A. (2003) Optimización de operaciones de un galpón de empaque. IDIA XXI, 4, 80-83.

[2]   Abad, M. and Puchades, R. (2002) Compostaje de residuos orgánicos generados en la hoya de Bunol (Valencia) con fines hortícolas. Ed. Asociación para la Promoción Socioeconómica Interior Hoya de Bunol, Valencia, 100 p.

[3]   Climent, M.D., Abad, M. and Aragón, P. (1996) El compost de Residuos Sólidos Urbanos (RSU). Sus características y aprovechamiento en agricultura. Universidad Politécnica de Valencia, Valencia, 57 p.

[4]   Raviv, M. (2005) Production of High-Quality Composts for Horticultural Purposes: A Mini Review. Hort Technology, 15, 52-57.

[5]   Claassen, V.P. and Carey, J.L. (2004) Regeneration of Nitrogen Fertility in Disturbed Soils Using Composts. Compost Science & Utilization, 12, 145-152.

[6]   Epstein, E. (1997) The Science of Composting. CRC Press LLC, Florida, 504 p.

[7]   Costa, F., García, C., Hernández, T. and Polo, A. (1995) Residuos orgánicos urbanos. Manejo y utilización. Consejo Superior de Investigaciones Científicas. Centro de Edafología y Biología Aplicada del Segura, Murcia, 181 p.

[8]   García, C., Hernández, T., Costa, C., Ceccanti, B., Masciandaro, G. and Ciardi, D. (1993) A Study of Biochemical Parameters of Composted and Fresh Municipal Wastes. Bioresource Technology, 44, 17-23.

[9]   Brown, S., Angle, J.S. and Jacobs, L. (1998) Beneficial Co-Utilization of Agricultural, Municipal and Industrial By- Products. Kluwer Academic Publishers, Doordrecht, 444 p.

[10]   Singh, R.P. and Agraval, M. (2008) Potential Benefits and Risks of Land Application of Sewage Sludge. Waste Management, 28, 347-358.

[11]   Casado-Vela, J., Sellés, S., Navarro, J., Bustamante, M.A., Mataix, J., Guerrero, C. and Gómez, I. (2006) Evaluation of Composted Sewage Sludge as Nutritional Source for Horticultural Soils. Waste Management, 26, 946-952.

[12]   Khwairakpam, M. and Bhargava, R. (2009) Vermitechnology for Sewage Sludge Recycling. Journal of Hazardous Materials, 161, 948-954.

[13]   Martin-Gil, J., Navas-Gracia, L.M., Gómez-Sobrino, E., Correa-Guimaraes, A. and Hernández-Navarro, S. (2008) Composting and Vermicomposting Experiences in the Treatment and Bioconversion of Asphaltens from the Prestige Oil Spill. Bioresource Technology, 99, 1821-1829.

[14]   Sallaku, G., Babaj, I., Kaciu, S. and Balliu, A. (2009) The Influence of Vermicompost on Plant Growth Characteristics of Cucumber (Cucumis sativus L.) Seedlings under Saline Conditions. Journal of Food, Agriculture & Environment, 7, 869-872.

[15]   Rynk, R., Van de Kamp, M., Willson, G.B., Singley, M.E., Richard, T.L., Kolega, J.J., Gouin, F.R., Laliberty Jr., L., Kay, D., Murphy, D.W., Hointink, H.A.J. and Brinton, W.F. (1992) On-Farm Composting Handbook. Northeast Regional Agricultural Engineering Service, Ithaca, NY, 186.

[16]   Sadzawka, A., Carrasco, M.A., Grez, R., Mora, M.L., Flores, H. and Reaman, A. (2006) Métodos de análisis recomendados para los suelos de Chile. Revisión 2006, Serie Actas INIA No 34, Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación La Platina, Santiago, 164 p.

[17]   Bremner, J.M. and Mulvaney, C.S. (1982) Nitrogen—Total. In: Page, A.L., Miller, R.H., Keeney, D.R., Eds., Methods of Soil Analysis, ASA-SSSA, Madison, 595-617.

[18]   Olsen, S.R., Cole, C.V., Watanabe, F.S. and Dean, L.A. (1954) Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate. US Department of Agriculture Circular No. 939.

[19]   Thomas, G.W. (1982) Exchangeable Cations. In: Page, A.L., Miller, R.H. and Keeney, D.R., Eds., Methods of Soil Analysis, Part 2, Agronomic Soil Science Society American, Madison, 159-165.

[20]   Mulchi, C.L., Adamu, C.A., Bell, P.F. and Chaney, R.L. (1991) Residual Heavy Metal Concentrations in Sludge- Amended Coastal Plain Soils—I. Comparison of Extractants. Communications in Soil Science and Plant Analysis, 22, 919-941.

[21]   INFOSTAT, Di Rienzo, J.A., Casanoves, F., Balzarini, M.G., Gonzalez, L., Tablada, M. and Robledo, C.W. (2011) InfoStat versión 2011. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina.

[22]   Miller, F.C. (1996) Composting of Municipal Solid Waste and Its Components. In: Palmisano, A.C. and Barlaz, M.A., Eds., Microbiology of Solid Waste, CRC Press, Boca Raton, 115-154.

[23]   Pordomingo, A.J. (2003) Gestión ambiental en el feedlot. Guía de buenas prácticas. INTA, Anguil, La Pampa, 100.

[24]   Sundberg, C., Smars, S. and Jonsson, H. (2004) Low pH as an Inhibiting Factor in the Transition of Mesophilic to Thermophilic Phase in Composting. Bioresource Technology, 95, 145-150.

[25]   Tramier, A., de Guardia, A., Massianic, C., Paul, E. and Martel, J.C. (2005) A Respirometric Method for Characterizing the Organic Composition and Biodegradation Kinetics and the Temperature Influence on the Biodegradation Kinetics, for a Mixture of Sludge and Bulking Agent to Be Co-Composted. Bioresource Technology, 96, 169-180.

[26]   Zucconi, F. and De Bertoldi, M. (1987) Compost Specifications for the Production and Characterization of Compost from Municipal Solid Waste. In: De Bertoldi, M., Ferranti, M.P., L′Hermite, M.P. and Zucconi, F., Eds., Compost: Production, Quality and Use, Elsevier, London, 276-295.

[27]   Rynk, R. (2000) Monitoring Moisture in Composting Systems. Biocycle, 41, 53-57.

[28]   Luo, W. and Chen, T.B. (2004) Effects of Moisture Content of Compost on Its Physical and Chemical Properties. Acta Ecologica Sinica, 24, 2656-2663.

[29]   Suler, D.J. and Finstein, M.S. (1977) Effect of Temperature, Aeration, and Moisture on CO2 Formation in Bench-Scale, Continuously Thermophilic Composting of Solid Waste. Applied and Environmental Microbiology, 33, 345-350.

[30]   Sanchez-Monedero, M., Roig, A., Paredes, C. and Bernal, P. (2001) Nitrogen Transformation Turing Organic Waste Composting by the Rutgers System and Its Effects on pH, EC and Maturity of the Composting Mixture. Bioresource Technology, 78, 301-308.

[31]   Said-Pullicino, D., Erriquens, F.G. and Gigliotti, G. (2007) Changes in the Chemical Characteristics of Water-Extractable Organic Matter during Composting and Their Influence on Compost Stability and Maturity. Bioresource Technology, 98, 1822-1831.

[32]   Beck-Friis, B., Smars, S., Jonsson, H., Eklind, Y. and Kirchmann, H. (2003) Composting of Source-Separated Household Organics at Different Oxygen Levels: Gaining an Understanding of the Emission Dynamics. Compost Science and Utilization, 11, 41-50.

[33]   Mitchell, A. (1997) Production of Eiseniafoetida and Vermicompost from Feed-Lot Cattle Manure. Soil Biology Biochemistry, 29, 763-766.

[34]   Nogales, R., Elvira, C., Benitez, E. and Gallardo-Lara, F. (1995) Uso agrícola de compost y vermicompost de basuras urbanas 1: Procesos, madurez y calidad de los productos. Residuos, 26, 53-57.

[35]   Tognetti, C., Mazzarino, M.J. and Laos, F. (2007) Improving the Quality of Municipal Organic Waste Compost. Bioresource Technology, 98, 1067-1076.

[36]   Wolkowski, R.P. (2003) Nitrogen Management Considerations for Landspreading Municipal Solid Waste Compost. Journal Environmental Quality, 32, 1844-1850.

[37]   Zmora-Nahum, S., Hadar, Y. and Chen, Y. (2007) Physi-co-Chemical Properties of Commercial Composts Varying in Their Source Materials and Country of Origin. Soil Biology and Biochemistry, 39, 1263-1276.

[38]   Kaushik, P. and Garg, V. (2004) Dynamics of Biological and Chemical Parameters during Vermicomposting of Solid Textile Mill Sludge Mixed with Cow Dung and Agricultural Residues. Bioresource Technology, 64, 203-209.

[39]   Hirari, M., Chanyasak, V. and Kubota, H. (1983) A Standard Measurement for Compost Maturity. Biocycle, 24, 54-56.

[40]   Lax, A., Roig, A. and Costa, F. (1986) A Method for Determining the Cation Exchange Capacity of Organic Materials. Plant and Soil, 94, 349-355.

[41]   Harada, Y. and Inoko, A. (1980) The Measurement of the Ca-tion-Exchange Capacity of Composts for the Estimation of the Degree of Maturity. Soil Science and Plant Nutrition, 26, 127-134.

[42]   Huang, G.F., Wu, Q.T., Wong, J.W.C. and Nagar, B.B. (2006) Transformation of Organic Matter during Co-Composting of Pig Manure with Sawdust. Bioresource Technology, 97, 1834-1842.