[1] Armand, M. and Tarascon, J.-M. (2008) Building Better Batteries. Nature, 451, 652-657.
http://dx.doi.org/10.1038/451652a
[2] Heng, F. and Chen, J. (2012) Metal-Air Batteries: From Oxygen Reduction Electrochemistry to Cathode Catalysts. Chemical Society Reviews, 41, 2172-2192.
http://dx.doi.org/10.1039/c1cs15228a
[3] Lee, S., Kim, S.T., Cao, R., et al. (2011) Metal-Air Batteries with High Energy Density: Li-Air versus Zn-Air. Advanced Energy Materials, 1, 34-50.
[4] Abraham, K.M. and Jiang, Z. (1996) A Polymer Electrolyte—Based Rechargeable Lithium/Oxygen Battery. Journal of the Electrochemical Society, 143, 1-5.
http://dx.doi.org/10.1149/1.1836378
[5] Girishkumar, G., McCloskey, B., Luntz, A., Swanson, S. and Wilcke, W. (2010) Lithium-Air Battery: Promise and Challenges. Journal of Physical Chemistry Letters, 1, 2193-2203.
http://dx.doi.org/10.1021/jz1005384
[6] Lu, Y.-C., Kwabi, D.G., Yao, K.P.C., et al. (2011) The Discharge Rate Capability of Rechargeable Li-O2 Batteries. Energy & Environmental Science, 4, 2999-3007.
http://dx.doi.org/10.1039/c1ee01500a
[7] Lu, Y.-C., Gasteiger, H.A., Parent, M.C., Chiloyan, V. and Shao-Horn, Y. (2010) The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li-Oxygen Batteries. Electrochemical and Solid-State Letters, 13, A69- A72.
http://dx.doi.org/10.1149/1.3363047
[8] Goodenough, J.B. and Kim, Y. (2009) Challenges for Rechargeable Li Batteries. Chemistry of Materials, 22, 587-603.
http://dx.doi.org/10.1021/cm901452z
[9] Debart, A., Bao, J., Armstrong, G. and Bruce, P.G. (2010) An O2 Cathode for Rechargeable Lithium Batteries: The Effect of a Catalyst. Journal of Power Sources, 174, 1177-1182.
http://dx.doi.org/10.1016/j.jpowsour.2007.06.180
[10] Debart, A., Paterson, A.J., Bao, J. and Bruce, P.G. (2008) Alpha-MnO2 Nanowires: A Catalyst for the O-2 Electrode in Rechargeable Lithium Batteries. Angew. Angewandte Chemie International Edition, 47, 4521-4524.
http://dx.doi.org/10.1002/anie.200705648
[11] Lu, Y.-C., Xu, Z.C., Gasteiger, H.A., et al. (2010) Platinum-Gold Nanoparticles: A Highly Active Bifunctional Elec- trocatalyst for Rechargeable Lithium-Air Batteries. Journal of the American Chemical Society, 132, 12170-12171.
http://dx.doi.org/10.1021/ja1036572
[12] Zhang, S.S., Foster, D. and Read, J. (2010) Discharge Characteristic of a Non-Aqueous Electrolyte Li/O2 Battery. Journal of Power Sources, 195, 1235-1240.
http://dx.doi.org/10.1016/j.jpowsour.2009.08.088
[13] Zhang, G.Q., Zheng, J.P., Liang, R., et al. (2010) Lithium-Air Batteries Using SWNT/CNF Buckypapers as Air Electrodes. Journal of the Electrochemical Society, 2010, 157, A953-A956.
http://dx.doi.org/10.1149/1.3446852
[14] Cheng, H. and Scott, K. (2010) Carbon-Supported Manganese Oxide Nanocatalysts for Rechargeable Lithium-Air Batteries. Journal of Power Sources, 195, 1370-1374.
http://dx.doi.org/10.1016/j.jpowsour.2009.09.030
[15] Mizuno, F., Nakanishi, S., Kotani, Y., Yokoishi, S. and Iba, H. (2010) Rechargeable Li-Air Batteries with Carbonate- Based Liquid Electrolytes. Electrochemistry, 78, 403-405.
http://dx.doi.org/10.5796/electrochemistry.78.403
[16] Lu, Y.-C., Gallant, B.M., Kwabi, D.G., et al. (2013) Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance. Energy & Environmental Science, 6, 750-768.
http://dx.doi.org/10.1039/c3ee23966g
[17] Freunberger, S.A., Chen, Y.H., Peng, Z.Q., Griffin, J.M., Hardwick, L.J., Bardé, F., et al. (2011) Reactions in the Rechargeable Lithium-O2 Battery with Alkyl Carbonate Electrolytes. Journal of the American Chemical Society, 133, 8040-8047.
http://dx.doi.org/10.1021/ja2021747
[18] Trahan, M.J., Mukerjee, S., Plichta, E.J. Hendrickson M.A. and Abraham, K.M. (2013) Cobalt Phthalocyanine Cata- lyzed Lithium-Air Batteries. Journal of the Electrochemical Society, 160, A1577-A1586.
http://dx.doi.org/10.1149/2.118309jes
[19] Chen, Y., Freunberger, S.A., Peng, Z., Bardé, F. and Bruce, P.G. (2012) Li-O2 Battery with a Dimethylformamide Electrolyte. Journal of the American Chemical Society, 134, 7952-7957.
http://dx.doi.org/10.1021/ja302178w
[20] Xu, K. (2004) Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical Reviews, 104, 4303- 4418.
http://dx.doi.org/10.1021/cr030203g
[21] Xu, W., Xu, K., Viswanathan, V.V., Towne, S.A., Hardy, J.S., Xiao, J., et al. (2011) Reaction Mechanisms for the Limited Reversibility of Li-O2 Chemistry in Organic Carbonate Electrolytes. Journal of Power Sources, 196, 9631- 9639.
http://dx.doi.org/10.1016/j.jpowsour.2011.06.099
[22] Xiao, J., Hu, J., Wang, D., Hu, D.H., Xu, W., Graff, G.L., et al. (2011) Investigation of the Rechargeability of Li-O2 Batteries in Non-Aqueous Electrolyte. Journal of Power Sources, 196, 5674-5678.
http://dx.doi.org/10.1016/j.jpowsour.2011.02.060
[23] Veith, G.M., Dudney, N.J., Howe, J. and Nanda, J. (2011) Spectroscopic Characterization of Solid Discharge Products in Li-Air Cells with Aprotic Carbonate Electrolytes. Journal of Physical Chemistry C, 115, 14325-14333.
[24] McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G. and Luntz, A.C. (2011) Solvents’ Critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry. Journal of Physical Chemistry Letters, 2, 1161-1166.
http://dx.doi.org/10.1021/jz200352v
[25] Freunberger, S.A., Chen, Y., Drewett, N.E., Hardwick, L.J., Bardé, F. and Bruce, P.G. (2011) The Lithium-Oxygen Battery with Ether-Based Electrolytes. Angewandte Chemie International Edition, 50, 8609-8613.
http://dx.doi.org/10.1002/anie.201102357
[26] Bryantsev, V.S. and Faglioni, F. (2012) Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li-Air Batteries. Journal of Physical Chemistry A, 116, 7128-7138.
http://dx.doi.org/10.1021/jp301537w
[27] Laoire, C.O., Mukerjee, S. and Abraham, K.M. (2010) Influence of Nonaqueous Solvents on the Electrochemistry of Oxygen in the Rechargeable Lithium-Air Battery. Journal of Physical Chemistry C, 114, 9178-9186.
http://dx.doi.org/10.1021/jp102019y
[28] Xu, D., Wang, Z., Xu, J., Zhang, L.L. and Zhang, X.B. (2012) Novel DMSO-Based Electrolyte for High Performance Rechargeable Li-O2 Batteries. Chemical Communications, 48, 6948-6950.
http://dx.doi.org/10.1039/c2cc32844e
[29] Peng, Z., Freunberger, S.A., Chen, Y. and Bruce, P.G. (2012) A Reversible and Higher-Rate Li-O2 Battery. Science, 337, 563-566.
http://dx.doi.org/10.1126/science.1223985
[30] Zhang, Z., Lu, J., Assary, R.S., Du, P., Wang, H.H., Sun, Y.K., et al. (2011) Increased Stability toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes. Journal of Physical Chemistry C, 115, 25535-25542.
http://dx.doi.org/10.1021/jp2087412
[31] Li, F.J., Zhang, T. and Zhou, H.S. (2013) Challenges of Non-Aqueous Li-O2 Batteries: Electrolytes, Catalysts, and Anodes. Energy & Environmental Science, 6, 1125-1141.
http://dx.doi.org/10.1039/c3ee00053b
[32] Younesi, R., Hahlin, M., Bjorefors, F., Johansson, P. and Edstrom, K. (2012) Li-O2 Battery Degradation by Lithium Peroxide (Li2O2): A Model Study. Chemistry of Materials, 25, 77-84.
http://dx.doi.org/10.1021/cm303226g
[33] Veith, G.M., Nanda, J., Delmau, L.H. and Dudney, N.J. (2012) Influence of Lithium Salts on the Discharge Chemistry of Li-Air Cells. Journal of Physical Chemistry Letters, 3, 1242-1247.
http://dx.doi.org/10.1021/jz300430s
[34] Xu, W., Hu, J.Z., Engelhard, M.H., Towne, S.A., Hardy, J.S., Xiao, J., et al. (2012) The Stability of Organic Solvents and Carbon Electrode in Nonaqueous Li-O2 Batteries. Journal of Power Sources, 215, 240-247.
http://dx.doi.org/10.1016/j.jpowsour.2012.05.021
[35] Suo, L., Hu, Y.S., Li, H., Armand, M. and Chen, L. (2013) A New Class of Solvent-in-Salt Electrolyte for High- Energy Rechargeable Metallic Lithium Batteries. Nature Communications, 4, 1-9.
http://dx.doi.org/10.1038/ncomms2513
[36] Wang, Z.L., Xu, D., Xu, J.J. and Zhang, X.B. (2014) Oxygen Electrocatalysts in Metal-Air Batteries: From Aqueous to Nonaqueous Electrolytes. Chemical Society Reviews, 43, 7746-7786.
http://dx.doi.org/10.1039/C3CS60248F
[37] Xie, B., Lee, H.S., Li, H., Yang, X.Q., McBreen, J. and Chen, L.Q. (2008) New Electrolytes Using Li2O or Li2O2 Oxides and Tris(pentafluorophenyl) Borane as Boron Based Anion Receptor for Lithium Batteries. Electrochemistry Communications, 10, 1195-1197.
http://dx.doi.org/10.1016/j.elecom.2008.05.043
[38] Wang, Y., Zheng, D., Yang, X.Q. and Qu, D.Y. (2011) High Rate Oxygen Reduction in Non-Aqueous Electrolyte with the Addition of Perfluorinated Additives. Energy & Environmental Science, 4, 3697-3702.
[39] Zhang, S. and Read, J. (2011) Partially Fluorinated Solvent as a Co-Solvent for the Non-Aqueous Electrolyte of Li/Air Battery. Journal of Power Sources, 196, 2867-2870.
http://dx.doi.org/10.1016/j.jpowsour.2010.11.021
[40] Mizuno, F., Nakanishi, S., Shirasawa, A., Takechi, K., Shiga, T., Nishikoori, H. and Iba, H. (2014) Design of Non- Aqueous Liquid Electrolytes for Rechargeable Li-O2 Batteries. Electrochemistry, 79, 876-881.
http://dx.doi.org/10.5796/electrochemistry.79.876
[41] Herranz, J., Garsuch, A. and Gasteiger, H.A. (2012) Using Rotating Ring Disc Electrode Voltammetry to Quantify the Superoxide Radical Stability of Aprotic Li-Air Battery Electrolytes. Journal of Physical Chemistry C, 116, 19084-19094.
http://dx.doi.org/10.1021/jp304277z
[42] Li, F.J., Kitaura, H. and Zhou, H.S. (2013) The Pursuit of Rechargeable Solid-State Li-Air Batteries. Energy & Environmental Science, 6, 2302-2311.
http://dx.doi.org/10.1039/c3ee40702k
[43] Croce, F., Appetecchi, G.B., Persi, L. and Scrosati, B. (1998) Nanocomposite Polymer Electrolytes for Lithium Batteries. Nature, 394, 456-458.
http://dx.doi.org/10.1038/28818
[44] Kumar, J. and Kumar, B. (2009) Development of Membranes and a Study of Their Interfaces for Rechargeable Lithium-Air Battery. Journal of Power Sources, 194, 1113-1119.
http://dx.doi.org/10.1016/j.jpowsour.2009.06.020