AMPC  Vol.5 No.4 , April 2015
Effect of Degree of ClO‾ Hypochlorite on the Wet Synthesis of Ferrate (VI)
ABSTRACT
This work is a result of previously done studies on the synthesis of A2FeVIO4 wet ferrate (VI) formula, using chlorine as an oxidant. The major problem of these ferrates is related to their stability over time. This brings us to identify and optimize the critical parameters influencing the preparation of the Na2FeO4 at room stable phase with acceptable performance. The use of water bleach (hypochlorite ClO‾) at a chlorometric degree of 50°F in the synthesis of the Na2FeO4 ambient stable phase promotes the oxidation of iron (II) iron to (VI) in a concentrated NaOH alkaline medium. The synthesis reaction is in the presence of FeSO4 7H2O hydrated iron sulfate at a temperature of about 55°C in order to simplify the synthesis process, to enhance the production of the Fe (VI) and to meet the growing demand of ferrates (VI) for their interest in the treatment of water. Monitoring the degradation of synthesized Na2FeO4 shows its stability up to 12 months, which facilitates storage and transportation. The phases obtained were characterized by IR spectroscopy, and RX by UV spectrophotometer, measuring the optical density at 507 nm.

Cite this paper
El Maghraoui, A. , Zerouale, A. and Ijjaali, M. (2015) Effect of Degree of ClO‾ Hypochlorite on the Wet Synthesis of Ferrate (VI). Advances in Materials Physics and Chemistry, 5, 133-139. doi: 10.4236/ampc.2015.54014.
References
[1]   Hoy, G. and Corson, M. (1980) Critical Slowing Down of Spin Fluctuations in K2FeO4. Journal of Magnetism and Magnetic Materials, 15, 627.

[2]   Menil, F. (1985) Systematic Trends of the 57Fe Mossbauer Isomer Shifts in (FeOn) and (FeFn) Polyhedra. Evidence of a New Correlation between the Isomer Shift and the Inductive Effect of the Competing Bond T-X (→Fe) (Where X Is O or F and T Any Element with a Formal Positive Charge. Journal of Physics and Chemistry of Solids, 46, 763-789.
http://dx.doi.org/10.1016/0022-3697(85)90001-0

[3]   Licht, S., Naschitz, V., Halperin, L., Halperin, N., Lin, L., Chen, J., Ghosh, S. and Liu, B. (2001) Analysis of Ferrate(VI) Compounds and Super-Iron Fe(VI) Battery Cathodes: FTIR, ICP, Titrimetric, XRD, UV/VIS, and Electrochemical Characterization. Journal of Power Sources, 101, 167-176.
http://dx.doi.org/10.1016/S0378-7753(01)00786-8

[4]   Licht, S., Tel-Vered, R. and Halperin, L. (2002) Direct Electrochemical Preparation of Solid Fe(VI) Ferrate, and Super-Iron Battery Compounds. Electrochemistry Communications, 4, 933-937.
http://dx.doi.org/10.1016/S1388-2481(02)00493-9

[5]   He, W.C., Wang, J.M., Shao, H.B., Zhang, J.Q. and Cao, C.-N. (2005) Novel KOH Electrolyte for One-Step Electrochemical Synthesis of High Purity Solid K2FeO4: Comparison with NaOH. Electrochemistry Communications, 7, 607-611.
http://dx.doi.org/10.1016/j.elecom.2005.04.011

[6]   Xu, Z.H., Wang, J.M., Shao, H.B., Tang, Z. and Zhang, J.Q. (2007) Preliminary Investigation on the Physicochemical Properties of Calcium Ferrate(VI). Electrochemistry Communications, 9, 371-377.
http://dx.doi.org/10.1016/j.elecom.2006.09.015

[7]   Hívesa, J., Benová, M., Bouzek, K., Sitek, J. and Sharma, V.K. (2008) The Cyclic Voltammetric Study of Ferrate(VI) Formation in a Molten Na/K Hydroxide Mixture. Electrochimica Acta, 54, 203-208.
http://dx.doi.org/10.1016/j.electacta.2008.08.009

[8]   Wang, Y.L., Ye, S.H., Wang, Y.Y., Cao, J.S. and Wu, F. (2009) Structural and Electrochemical Properties of a K2FeO4 Cathode for Rechargeable Li Ion Batteries. Electrochimica Acta, 54, 4131-4135.

[9]   Zuzana, M., Bouzek, K., Híves, J., Sharma, V.K., Raymond, J.T. and Baum, J.C. (2009) Research Progress in the Electrochemical Synthesis of Ferrate(VI). Electrochimica Acta, 54, 2673-2683.
http://dx.doi.org/10.1016/j.electacta.2008.11.034

[10]   Jain, A., Sharma, V.K. and Mbuya, M.S. (2009) Removal of Arsenite by Fe(VI), Fe(VI)/Fe(III), and Fe(VI)/Al(III) Salts: Effect of pH and Anions. Journal of Hazardous Materials, 169, 339-344.
http://dx.doi.org/10.1016/j.jhazmat.2009.03.101

[11]   Lee, Y.H., Cho, M., Kim, J.Y. and Yoon, J.Y. (2004) Chemistry of Ferrate (Fe(VI)) in Aqueous Solution and Its Application as a Green Chemical. Journal of Industrial and Engineering Chemistry, 10, 161-171.

[12]   Ockerman, L.T., Schreyer, J.M. and Thompson, G.W. (1951) Preparation and Purification of Potassuim Ferrate. VI. Journal of the American Chemical Society, 73, 1379-1381.
http://dx.doi.org/10.1021/ja01147a536

[13]   Schreyer J.M., Thompson, G.W. and Ockerman, L.T. (1953) Potasuim Ferrate (VI). Inorganic Synthesis, 4, 164-169.

[14]   Scholder, R., Bunsen, H., Kin, F., Zeiss, W. and Anorg, Z. (1955) Zur Kenntnis der Ferrate(VI). Zeitschrift für anorganische und allgemeine Chemie, 282, 268-279.
http://dx.doi.org/10.1002/zaac.19552820129

[15]   El Maghraoui, A., Zerouale, A. and Ijjaali, M. (2015) Process for the Synthesis of Ferrate(VI) Alkali Metal Dry. Advances in Materials Physics and Chemistry, 5, 10-15.

[16]   Hrostowski, H.J. and Scott, A.B. (1950) The Magnetic Susceptibility of Potassium Ferrate. Journal of Chemical Physics, 18, 105-107.
http://dx.doi.org/10.1063/1.1747423

[17]   Hooker, A. (1920) Hipocloritos. Chem. and Met. eng., 23, 961.

[18]   El Maghraoui, A., Zerouale, A., Ijjaali, M. and Sajieddine, M. (2013) Synthesis and Characterization of Ferrate(VI) Alkali Metal by Electrochemical Method. Advances in Materials Physics and Chemistry, 3, 83-87.
http://dx.doi.org/10.4236/ampc.2013.31013

[19]   Becarud, N. and Dural, C. (1963) Reactions and Properties of Potassium, Barium, and Strontium Ferrates. Comptes Rendus, 257, 1930-1933.

[20]   Gonzales-Vilchez, F. and Griffith, W. (1972) Transition-Metal Tetraoxo-Complexes and Their Vibrational Spectra. Journal of the Chemical Society, Dalton Transactions, 13, 1416-1421.
http://dx.doi.org/10.1039/dt9720001416

[21]   Griffith, W. (1966) Infrared Spectra of Tetrahedral Oxyanions of the Transition Metals. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1467-1468.
http://dx.doi.org/10.1039/j19660001467

[22]   Tarte, P. and Nizet, G. (1964) Etude infrarouge de quelque composés du type K2FeO4 et BaSO4. Spectrochimica Acta, 20, 503-513.
http://dx.doi.org/10.1016/0371-1951(64)80045-X

[23]   Neveux, N. (1993) Voie de synthése originale de ferrates(VI) alcalins stabilisès et leurs applications potentielles dans le traitement des eaux. Thése de doctorat, Universitè de nancy I, Nancy.

[24]   Krebs, V.H. (1950) The Structure of the Potassium Ferrate and Barium Ferrats with 2 Figures. Zeitschrift für anorganische und allgemeine Chemie, 263, 175-176.
http://dx.doi.org/10.1002/zaac.19502630405

[25]   Helfrich, B. and Lang, K. (1950) Uber salze der eisensaure. Zeitschrift für anorganische und allgemeine Chemie, 263, 169-174.

[26]   Audette, R.J. and Quail, J.W. (1972) Potassium, Rubidium, Césium, and Barium Ferrates VI: Préparations, Infrared Spectra, and Magnetic Susceptibilities. Inorganic Chemistry, 11, 1904-1908.
http://dx.doi.org/10.1021/ic50114a034

[27]   Lia, C., Lia, X.Z. and Grahamb, N. (2005) A Study of the Preparation and Reactivity of Potassium Ferrate. Chemosphere, 61, 537-543.
http://dx.doi.org/10.1016/j.chemosphere.2005.02.027

[28]   Tsapin, A.I., Goldfeld, M.G., Mcdonald, G.D., Nealson, K.H., Moskovitz, B., Solheid, P., Klemner, W., Kelly, S.D. and Orlandini, K.A. (2000) Iron(VI): Hypothetical Candidate for the Martian Oxidant. Icarus, 147, 68-78.

[29]   El Maghraoui, A., Zerouale, A., Ijjaali, M. and Fikri Benbrahim, K. (2013) The Role of Ferrates(VI) as a Disinfectant: Quantitative and Qualitative Evaluation for the Inactivation of Pathogenic Bacteria. African Journal of Microbiology Research, 7, 3690-3697.

 
 
Top