ABB  Vol.6 No.4 , April 2015
Improvement of Sporulation Conditions of a New Strain of Bacillus amyloliquefaciens in Liquid Fermentation
Abstract: The desirable active ingredients for the development of bioproducts based in Bacillus sp. for the control of soil pathogens are the spores because these structures exhibit more resistance and stability to conditions present during the fermentation, formulation, and storage processes. To improve the sporulation of a native strain of Bacillus amyloliquefaciens (Bs006) using liquid fermentation, some modifications in the concentrations of the components in a previously standardized culture media were made. Subsequently, five sporulation inducers (iron nitrate, mixture of salts, peroxide hydrogen, temperature, and initial cell concentration) were evaluated. The treatment with a mixture of salts in combination with an initial cell concentration of 1 × 108 cells/ml was selected because a final spore concentration of 1.05 × 1010 spores/ml after 66 hours with a fully substrate consumption and sporulation efficiency of 88.7% was obtained. To demonstrate the biological activity of B. amyloliquefaciens Bs006 in Cape gooseberry seedlings, a greenhouse bioassay was conducted, and statistical differences in plant growth-promoting parameters compared with previous media were not found. Additionally, the proposed modified media (coded as JM) presented a benefit-cost ratio 2.65 times higher compared with the baseline media.
Cite this paper: Díaz-García, A. , García-Riaño, J. and Zapata-Narvaez, J. (2015) Improvement of Sporulation Conditions of a New Strain of Bacillus amyloliquefaciens in Liquid Fermentation. Advances in Bioscience and Biotechnology, 6, 302-310. doi: 10.4236/abb.2015.64029.

[1]   Yanéz-Mendizábal, V., Viñas, I., Usall, J., Torres, R., Solsona, C. and Teixidó, N. (2012) Production of the Postharvest Biocontrol Agent Bacillus subtilis CPA-8 Using Low Cost Commercial Products and By-Products. Biological Control, 60, 280-289.

[2]   Schallmey, M., Singh, A. and Ward, O. (2004) Developments in the Use of Bacillus Species for Industrial Production. Canadian Journal of Microbiology, 50, 1-17.

[3]   Ongena, M. and Jacques, P. (2008) Bacillus Lipopeptides: Versatile Weapons for Plant Disease Biocontrol. Trends in Microbiology, 16, 115-125.

[4]   (2010) Ministerio de Agricultura y Desarrollo Rural: Anuario estadístico de frutas y hortalizas 2006-2010 y sus calendarios de siembras y cosechas.Dirección de Política sectorial - Grupo Sistemas de Información, Bogotá, D.C, 140.

[5]   (2009) Ministerio de Agricultura y Desarrollo Rural: Agenda prospectiva de investigación y desarrollo tecnológico para la cadena productiva de la uchuva en fresco para exportación en Colombia, Giro Editores Ldta. Bogotá, D.C, 29-35

[6]   Zapata, J. and Díaz, A. (2012) Evaluaciones en invernadero y selección de prototipos a base de rizobacterias. En: Estrategias de control biológico de F. oxysporum en el cultivo de uchuva (Physalis peruviana L.). Corpoica Bogotá, 62-70.

[7]   Díaz, A., Mejía, C., Cruz, L. and Sáenz, J. (2012) Producción masiva de rizobacterias. En: Estrategias de control biológico de F. oxysporum en el cultivo de uchuva (Physalis peruviana L.). Corpoica Bogotá, 32-44

[8]   Godoy, R. (2002) Método DNS para la determinación de azúcares reductores totales en melaza, sustrato de fermentación y vinos. En: Manual de métodos analíticos. Departamento de Ingeniería Química. Universidad Nacional.

[9]   Miller, G. (1959) Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426-428.

[10]   Dean, B. and Nishry, T. (1965) Scoring and Profitability Models for Evaluating and Selecting Engineering Products. Journal Operations Research Society of America, 13, 550-569.

[11]   Moita, C., Feio, S., Nunes, L., Curto, M.-J. and Roseiro, J.-C. (2005) Optimization of Physical Factors on the Production of Active Metabolites by Bacillus subtilis 355 against Wood Surface Contaminant Fungi. International Biodeterioration & Biodegradation, 55, 261-269.

[12]   Prabakaran, G. and Balaraman, K. (2006) Development of a Cost-Effective Medium for the Large Scale Production of Bacillus thuringiensis var israelensis. Biological Control, 36, 288-292.

[13]   Prabakaran, G. and Hoti, L. (2008) Egg Yolk Enhances Early Sporulation and Toxicity of Bacillus sphaericus H5a5b for Small-Scale Production of a Mosquito Control Agent. Acta Tropica, 108, 50-53.

[14]   Rao, Y., Tsay, K., Wu, W. and Tzeng, Y. (2007) Medium Optimization of Carbon and Nitrogen Sources for the Production of Spores from Bacillus amyloliquefaciens B128 Using Response Surface Methodology. Process Biochemistry, 42, 535-541.

[15]   Oomes, S., Jonker, M., Wittink, F., Hehenkamp, J., Breit, T. and Brul, S. (2009) The Effect of Calcium on the Transcriptome of Sporulating B. subtilis Cells. International Journal of Food Microbiology, 133, 234-242.

[16]   Piggot, P. and Hilbert, D. (2004) Sporulation of Bacillus subtilis. Current Opinion in Microbiology, 7, 579-586.

[17]   Powell, F. (1953) Isolation of Dipicolinic Acid (Pyridine-2,6-dicarboxylic acid) from Spores of Bacillus megatherium. Biochemical Journal, 54, 210-211.

[18]   Purohit, M., Sassi-Gaha, S. and Richard, F. (2010) Rapid Sporulation of Bacillus anthracis in a High Iron Glucose-Free Medium. Journal of Microbiological Methods, 82, 282-287.

[19]   Mishra, S., Noronha, S.-B. and Suraiskumar, G.-K. (2005) Increase in Enzyme Productivity by Induced Oxidative Stress in Bacillus subtilis Cultures and Analysis of Its Mechanism Using Microarray Data. Process Biochemistry, 40, 1863-1870.

[20]   Sonenshein, A. (2000) Control of Sporulation Initiation in Bacillus subtilis. Current Opinion in Microbiology, 3, 561-566.

[21]   Warriner, K. and Waltes, W.-M. (1999) Enhanced Sporulation in Bacillus subtilis Grown on Medium Containing Glucose and Ribose. Letters in Applied Microbiology, 29, 97-102.

[22]   Egamberdiyeva, D. and Höflich, G. (2004) Effect of Plant Growth-Promoting Bacteria on Growth and Nutrient Uptake of Cotton and Pea in a Semi-Arid Region of Uzbekistan. Journal of Arid Environments, 56, 293-301.

[23]   Spaepen, S., Vanderleyden, J. and Okon, Y. (2009) Plant Growth-Promoting Actions of Rhizobacteria. Advances in Botanical Research, 51, 284-310.

[24]   Choudhary, D. and Johri, B. (2009) Interactions of Bacillus spp. and Plants with Special Reference to Induced Systemic Resistance (ISR). Microbiological Research, 164, 493-513.

[25]   Buensanteai, N., Yuen, G.-Y. and Prathuangwong, S. (2008) The Biocontrol Bacterium Bacillus amyloliquefaciens KPS46 Produces Auxin, Surfactin and Extracellular Proteins for Enhanced Growth of Soybean Plant. Thai Journal of Agricultural Science, 41, 101-116.

[26]   Liu, J., He, D., Li, X.-Z., Gao, S., Wu, H., Liu, W., Gao, X. and Zhou, T. (2010) γ-Polyglutamic Acid (γ-PGA) Produced by Bacillus amyloliquefaciens C06 Promoting Its Colonization on Fruit Surface. International Journal of Food Microbiology, 142, 190-197.