Back
 JMP  Vol.6 No.5 , April 2015
Critical Theory of Two-Dimensional Mott Transition: Integrability and Hilbert Space Mapping
Abstract: We reconsider the Mott transition in the context of a two-dimensional fermion model with density-density coupling. We exhibit a Hilbert space mapping between the original model and the Double Lattice Chern-Simons theory at the critical point by use of the representation theory of the q-oscillator and Weyl algebras. The transition is further characterized by the ground state modification. The explicit mapping provides a new tool to further probe and test the detailed physical properties of the fermionic lattice model considered here and to enhance our understanding of the Mott transition(s).
Cite this paper: Bottesi, F. and Zemba, G. (2015) Critical Theory of Two-Dimensional Mott Transition: Integrability and Hilbert Space Mapping. Journal of Modern Physics, 6, 634-639. doi: 10.4236/jmp.2015.65069.
References

[1]   Bottesi, F.L. and Zemba, G.R. (2011) Annals of Physics, 326, 1916-1940.
http://dx.doi.org/10.1016/j.aop.2011.04.010

[2]   Georges, A., Kotliar, G., Krauth, W. and Rosenberg, M. (1996) Reviews of Modern Physics, 68, 13.

[3]   Polchinski, J. (1992) Effective Field Theory and the Fermi Surface. Lectures TASI, arXiv: hep-th/9210046.

[4]   Sergeev, S.M. (2006) International Journal of Mathematics and Mathematical Sciences, 2006, Article ID: 92064.
http://dx.doi.org/10.1155/IJMMS/2006/92064

[5]   Fradkin, E. (1989) Physical Review Letters, 63, 322.
http://dx.doi.org/10.1103/PhysRevLett.63.322

[6]   Zamolodchikov, A. (1981) Communications in Mathematical Physics, 79, 489.
http://dx.doi.org/10.1007/BF01209309

[7]   Shankar, R. (1990) International Journal of Modern Physics, B4, 2371.
http://dx.doi.org/10.1142/S0217979290001121

[8]   Sergeev, S. (2006) Physics Letters, A357, 417-419.
http://dx.doi.org/10.1016/j.physleta.2006.04.089

[9]   Bazhanov, V.V. and Sergeev, S.M. (2006) Journal of Physics, A39, 3295.
http://dx.doi.org/10.1088/0305-4470/39/13/009

[10]   Kuniba, A., Okado, M. and Sergeev, S. (2015) Tetrahedron Equation and Generalized Quantum Groups. arXiv: 1503.08536 [math.QA].
Bazhanov, V.V. and Sergeev, S.M. (2015) Yang-Baxter Maps, Discrete Integrable Equations and Quantum Groups. arXiv: 1501.06984 [math-ph].
Kuniba, A., Okado, M. and Sergeev, S. (2015) Letters in Mathematical Physics, 105, 447-461.
Mangazeev, V.V., Bazhanov, V.V. and Sergeev, S.M. (2013) Journal of Physics, A46, 465206.

[11]   Korepanov, I.G. (1995) Algebraic Integrable Dynamical Systems, 2+1-Dimensional Models in Wholly Discrete Space-Time, and Inhomogeneous Models in 2-Dimensional Statistical Physics. arXiv: solv-int/9506003.

[12]   Grensing, G. (1998) Physics Letters, B419, 258.
http://dx.doi.org/10.1016/S0370-2693(97)01459-7

[13]   Bos, M. and Nair, V.P. (1990) International Journal of Modern Physics, A5, 959.
http://dx.doi.org/10.1142/S0217751X90000453

[14]   Trugengerber, C.A. (1994-1995) Topics in Planar Gauge Theories. Lausanne U.

[15]   Witten, E. (1989) Communications in Mathematical Physics, 121, 351.
http://dx.doi.org/10.1007/BF01217730

 
 
Top