[1] Segal, I.E. (1976) Mathematical Cosmology and Extragalactic Astronomy. Pure and Applied Mathematics, 68, Academic Press, New York.
[2] Bulnes, F. (2006) Doctoral Course of Mathematical Electrodynamics. SEPI-IPN, Mexico, 9, 398-447.
[3] Dummit, D.S. and Foote, R.M. (2004) Abstract Algebra. Wiley, Hoboken.
[4] Marsden, J.E. and Abraham, R. (1982) Manifolds, Tensor Analysis and Applications. Addison Wesley, Massachusetts.
[5] Wilczek, F (2009) Majorana Returns. Nature Physics, 5, 614.
[6] Bulnes, F. (2014) A Lie-QED-Algebra and Their Fermionic Fock Space in the Superconducting Phenomena. Quantum Mechanics, Rijeka.
[7] Bulnes, F., Hernandez, E. and Maya, J. (2010) Design and Development of an Impeller Synergic System of Electromagnetic Type for Levitation, Suspension and Movement of Symmetrical Bodies, IMECE/ASME, British Columbia, Canada.
[8] Nielsen, H.B. and Olesen, P. (1973) Vortex-Line Models for Dual Strings. Nuclear Physics B, 61, 45-61.
[9] Alario, M.A. and Vicent, J.L. (1991) Superconductivity. Eudema Fortuny, Madrid, Spain.
[10] Ginzburg, V.L. and Landau, L.D. (1950) Zh. Eksp. Teor. Fiz. 20, 1064.
[11] Bulnes, F., Martínez, I. and Maya, J. (2012) Design and Development of Impeller Synergic Systems of Electromagnetic Type to Levitation/Suspension Flight of Symmetrical Bodies. Journal of Electromagnetic Analysis and Applications, 4, 42-52.
[12] Bulnes, F. (2013) Orbital Integrals on Reductive Lie Groups and Their Algebras. Intech, Rijeka. http://www.intechopen.com/books/orbital-integrals-on-reductive-lie-groups-and-their-algebras/orbital-integrals-on-reductive-lie-groups-and-their-algebrasB
[13] Strutinsky, V.M. (1967) Shell Effects in Nuclear Physics and Deformation Energies. Nuclear Physics A, 95, 420-442.
[14] Hossenfelder, S. (2006) Anti-Gravitation. Elsevier Science.
[15] Dixmier, J. (1969) Les C*-algèbres et leurs representations. Gauthier-Villars, France.
[16] Cooper, L. (1956) Bound Electron Pairs in a Degenerate Fermi Gas. Physical Review, 104, 1189-1190.
[17] Verkelov, I., Goborov, R. and Bulnes, F. (2013) Fermionic Fock Space in Superconducting Phenomena and Their Applications. Journal on Photonics and Spintronics, 2, 19-29.
[18] Bardeen, J., Cooper, L.N. and Schrieffer, J.R. (1957) Microscopic Theory of Superconductivity. Physical Review, 106, 162-164.
[19] Bulnes, F. (2013) Mathematical Nanotechnology: Quantum Field Intentionality. Journal of Applied Mathematics and Physics, 1, 25-44.
[20] Llano, M. (2003) Unificación de la Condensación de Bose-Einstein con la Teoría BSC de Superconductores. Rev. Ciencias Exactas y Naturais, 5, 9-21.
[21] Bulnes, F. (2013) Quantum Intentionality and Determination of Realities in the Space-Time through Path Integrals and Their Integral Transforms, Advances in Quantum Mechanics, Prof. Paul Bracken (Ed.), InTech. http://www.intechopen.com/books/advances-in-quantum-mechanics/quantum-intentionality-and-determination-of-realities-in-the-space-time-through-path-integrals-and-t
[22] Landau, L.D. and Lifshitz, E.M. (1960) Electrodynamics of Continuous Media. Volume 8 of Course of Theorical Physics, Pergamon Press, London.
[23] Bulnes, F. (1998) The Super Canonical Algebra . International Conferences of Electrodynamics in Veracruz, IM/UNAM, Mex-ico.