Projection Pursuit Flood Disaster Classification Assessment Method Based on Multi-Swarm Cooperative Particle Swarm Optimization

References

[1] E. J. Plate, “Flood Risk and Flood Management,” Journal of Hydrology, Vol. 267, No.1-2, 2002, pp. 2-11.
doi:10.1016/S0022-1694(02)00135-X

[2] B.-H. Wang and X.-Y. Yang, “The Application of PPC Model of RAGA on the Compositive Evaluation of Flood Disaster in Heilongjiang Province,” Journal of Guangdong Technical College of Water Resources and Electric Engineering, 2009, pp. 46-49.

[3] A.-X. Zhao and Z.-J. Ma, “Appraising Study for the Loss Evaluation System of Natural Disasters,” Journal of Natural Disasters, 1993, Vol. 2, pp. 1-7.

[4] Y.-Y. He, J.-Z. Zhou, Qin Hui, L. Mo and P.-G. Kou, “Flood Disaster Classification Based on Fuzzy Clustering Iterative Model and Modified Differential Evolution Algorithm,” Proceedings of the 6th International Conference on Fuzzy Systems and Knowledge Discovery, Tianjing, 14-16 August 2009, Vol 3.

[5] Y.-N. Chen and S.-Q. Yang, “Application of Grey Clustering Analysis in the Classification of Flood Disaster Grade,” Arid Land Geography, 1999, pp. 37-42.

[6] G. Kim and A. P. Barros, “Quantitative Flood Forecasting Using Multisensor Data and Neural Networks,” Journal of Hydrology, Vol. 246, No.1-4, 2001, pp. 45-62.
doi:10.1016/S0022-1694(01)00353-5

[7] S.-J. Wang, X.-l. Zhang, Y. Hou and J. Ding, “Projection Pursuit Model for Evaluating of Flood Events,” Hydrology, Vol. 22, 2002, pp. 1-4.

[8] A. Montanari and L. Lizzani, “A Projection Pursui Approach to Variable Selection,” Computational Statisics & Data Analysis, Vol. 35, No. 4, 2001, pp. 463-473.
doi:10.1016/S0167-9473(00)00026-8

[9] R. Poli, J. Kennedy and T. B. Well, “Particle Swarm Optimization: A Overview,” Swarm Intelligence, Vol. 1, No. 1, 2007, pp. 33-57. doi:10.1007/s11721-007-0002-0

[10] J. V. Ast, R. Babuska and B. D. Schutter, “Particle Swarms in Optimization and Control,” Proceedings of the 17th World Congress the International Federation of Automatic Control, Seoul, Korea, 6-11 July 2008, pp. 5131-5136.

[11] A. Banks, J. Vincent and C. Anyakoha, “A review of Particle Swarm Optimization. Part I: Background and Development,” Natural Computing, Vol. 6, No. 4, 2007, pp. 467-484. doi:10.1007/s11047-007-9049-5

[12] J. Friedman and J. Tukey, “A Projection Pursuit Algorithm for Exploratory Data Analysis,” Computers, Vol. 23, 1974, pp. 881-890.

[13] Y.-L. Lu, J.-Z. Zhou, L.-X. Song and Y.-Y. He, “Flood Disaster Evaluating Method Based on CCPSO along with Project Pursuit Model and Its Application,” Journal of System Simulation, 2010, pp. 383-387+390.

[14] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” IEEE International Conference Evolutionary Computation, Anchorage, 15-19 July 1995, pp. 1942- 1948.

[15] P. J. Angeline, “Evolutionary Optimization Versus Particle Swarm Optimization: Philosophy and Performance Difference,” Proceedings of the 7th Annual Conference on Evolutionary Programming, San Diego, California, 26-29 March 1998, pp. 601-610.
doi:10.1007/BFb0040811

[16] B. Niu, Y.-l. Zhu, X.-X. He and H. Shen, “A Multi-Swarm Optimizer Based Fuzzy Modeling Approach for Dynamic System Processing,” Neurocomputing, Vol. 71, No.7-9, 2008, pp. 1436-1448.
doi:10.1016/j.neucom.2007.05.010

[17] Y. Marinakis and M. Marinaki, “A Hybrid Multi-Swarm Particle Swarm Optimization Algorithm for the Probabilisitc Traveling Salesman Problem,” Computers & Operations Research, Vol. 37, No. 3, 2010, pp. 432-442.
doi:10.1016/j.cor.2009.03.004

[18] J.-L. Jin, X.-L. Zhang, J. Ding, “Projection Pursuit Model for Evaluating Grade of Flood Disaster Loss,” System Engineering-Theory & Practice, 2002, pp. 140-144.