IJAA  Vol.1 No.2 , June 2011
An Approximation Algorithm for the solution of astrophysics equations using rational scaled generalized Laguerre function collocation method based on transformed Hermite-Gauss nodes
ABSTRACT
In this paper we propose a collocation method for solving Lane-Emden type equation which is nonlinear or-dinary differential equation on the semi-infinite domain. This equation is categorized as singular initial value problems. We solve this equation by the generalized Laguerre polynomial collocation method based on Her-mite-Gauss nodes. This method solves the problem on the semi-infinite domain without truncating it to a fi-nite domain and transforming domain of the problem to a finite domain. In addition, this method reduces so-lution of the problem to solution of a system of algebraic equations.

Cite this paper
nullA. Pirkhedri, P. Daneshjoo, H. Javadi, H. Navidi, S. Khodamoradi and K. Ghaderi, "An Approximation Algorithm for the solution of astrophysics equations using rational scaled generalized Laguerre function collocation method based on transformed Hermite-Gauss nodes," International Journal of Astronomy and Astrophysics, Vol. 1 No. 2, 2011, pp. 67-72. doi: 10.4236/ijaa.2011.12010.
References
[1]   D. Funaro and O. Kavian, “Approximation of Some Diffusion Evolution Equations in Unbounded Domains by Hermite Functions,” Mathematics of Computation, Vol. 57, No. 196, 1991, pp. 597-619. doi:10.1090/S0025-5718-1991-1094949-X

[2]   O. Coulaud, D. Funaro and O. Kavian, “Laguerre Spectral Approximation of Elliptic Problems in Exterior Domains,” Computer Methods in Applied Mechanics and Engineering, Vol. 80, No. 1-3, 1990, pp. 451-458. doi:10.1016/0045-7825(90)90050-V

[3]   D. Funaro, “Computational Aspects of Pseudospectral La- guerre Approximations,” Applied Numerical Mathematics, Vol. 6, No. 6, 1990, pp. 447-457. doi:10.1016/0168-9274(90)90003-X

[4]   B. Y. Guo, “Error Estimation of Hermite Spectral Method for Nonlinear Partial Differential Equations,” Mathematics of Computation, Vol. 68, No. 227, 1999, pp. 1067- 1078. doi:10.1090/S0025-5718-99-01059-5

[5]   B. Y. Guo and J. Shen, “Laguerre-Galerkin Method for Nonlinear Partial Differential Equations on a Semi-Infinite Interval,” Numerische Mathematik, Vol. 86, No. 4, 2000, pp. 635-654. doi:10.1007/PL00005413

[6]   Y. Maday, B. Pernaud-Thomas and H. Vandeven, “Reappraisal of Laguerre Type Spectral Methods,” La Recherche Aerospatiale, Vol. 6, 1985, pp. 13-35.

[7]   J. Shen, “Stable and Efficient Spectral Methods in Unbounded Domains Using Laguerre Functions,” SIAM Jou- rnal on Numerical Analysis, Vol. 38, No. 4, 2000, pp. 1113-1133. doi:10.1137/S0036142999362936

[8]   H. I. Siyyam, “Laguerre Tau Methods for Solving Higher Order Ordinary Differential Equations,” Journal of Com- putational Analysis and Applications, Vol. 3, No. 2, 2001, pp. 173-182. doi:10.1023/A:1010141309991

[9]   B. Y. Guo, “Gegenbauer Approximation and Its Applications to Differential Equations on the Whole Line,” Jour- nal of Mathematical Analysis and Applications, Vol. 226, No. 1, 1998, pp. 180-206. doi:10.1006/jmaa.1998.6025

[10]   B. Y. Guo, “Jacobi Spectral Approximation and Its Applications to Differential Equations on the Half Line,” Journal of Computational Mathematics, Vol. 18, 2000, pp. 95-112.

[11]   B. Y. Guo, “Jacobi Approximations in Certain Hilbert Spaces and Their Applications to Singular Differential Equations,” Journal of Mathematical Analysis and Applications, Vol. 243, No. 2, 2000, pp. 373-408. doi:10.1006/jmaa.1999.6677

[12]   C. I. Christov, “A Complete Orthogonal System of Functions in L2 (?∞, ∞) Space,” SIAM Journal on Numerical Analysis, Vol. 42, No. 6, 1982, pp. 1337-1344.

[13]   J. P. Boyd, “Spectral Methods Using Rational Basis Functions on an Infinite Interval,” Journal of Computational Physics, Vol. 69, No. 1, 1987, pp. 112-142. doi:10.1016/0021-9991(87)90158-6

[14]   J. P. Boyd, “Orthogonal Rational Functions on a Semi- I nfinite Interval,” Journal of Computational Physics, Vol. 70, No. 1, 1987, pp. 63-88. doi:10.1016/0021-9991(87)90002-7

[15]   B. Y. Guo, J. Shen and Z. Q. Wang, “A Rational Approximation and Its Applications to Differential Equations on the Half Line,” Journal of Scientific Computing, Vol. 15, No. 2, 2000, pp. 117-147. doi:10.1023/A:1007698525506

[16]   J. P. Boyd, “Chebyshev and Fourier Spectral Methods,” 2nd Edition, Dover, New York, 2000.

[17]   C. M. Bender, K. A. Milton, S. S. Pinsky, Jr. and L. M. Simmons, “A New Perturbative Approach to Nonlinear Problems,” Journal of Mathematical Physics, Vol. 30, No. 7, 1989, pp. 1447-1455. doi:10.1063/1.528326

[18]   D. C. Biles, M. P. Robinson and J. S. Spraker, “A Generalization of the Lane-Emden Equation,” Journal of Mathe- matical Analysis and Applications, Vol. 273, No. 2, 2002, pp. 654-666. doi:10.1016/S0022-247X(02)00296-2

[19]   G. Bluman, A. F. Cheviakov and M. Senthilvelan, “Solution and Asymptotic/Blow-up Behaviour of a Class of Nonlinear Dissipative Systems,” Journal of Mathematical Analysis and Applications, Vol. 339, No. 2, 2008, pp. 1199-1209. doi:10.1016/j.jmaa.2007.06.076

[20]   G. P. Horedt, “Polytropes Applications in Astrophysics and Related Fields,” Klawer Academic Publishers, Dordrecht, 2004.

[21]   K. Parand and A. Pirkhedri, “Sinc-Collocation Method for Solving Astrophysics Equations,” New Astronomy, Vol. 15, No. 6, 2010, pp. 533-537. doi:10.1016/j.newast.2010.01.001

[22]   S. S. Bayin, “Mathematical Methods in Science and Engineering,” John Wiley & Sons, New York, 2006. doi:10.1002/0470047429

[23]   G. Szegao, “Orthogonal Polynomils,” AMS, New York, 1939.

[24]   D. Funaro, “Polynomial Approximation of Differential Equations,” Springer-Verlag, Berlin, 1992.

[25]   V. Iranzo and A. Falques, “Some Spectral Approximations for Differential Equations in Un-Bounded Domains,” Com- puter Methods in Applied Mechanics and Engineering, Vol. 98, No. 1, 1992, pp. 105-126. doi:10.1016/0045-7825(92)90171-F

[26]   J. P. Boyd, C. Rangan and P. H. Bucksbaum, “Pseudospectral Methods on a Semi-Infinite Interval with Application to the Hydrogen Atom: A Comparison of the Mapped Fourier-Sine Method with Laguerre Series and Rational Chebyshev Expansions,” Journal of Computational Physics, Vol. 188, No. 1, 2003, pp. 56-74. doi:10.1016/S0021-9991(03)00127-X

[27]   J. Shen and L. Wang, “Some Recent Advances on Spectral Methods for Unbounded Domains,” Communications in Computational Physics, Vol. 5, No. 2, 2009, pp. 195- 241.

[28]   J. Shen, T. Tang, “High Order Numerical Methods and Algorithms,” Chinese Science Press, Beijing, 2005.

[29]   J. Shen, T. Tang and L. Wang, “Spectral Methods Algorithms, Analyses and Applications,” Springer, Berlin, 2010.

 
 
Top