OJAP  Vol.4 No.2 , June 2015
Evaluating Sensitivity to Different Options and Parameterizations of a Coupled Air Quality Modelling System over Bogotá, Colombia. Part I: WRF Model Configuration
ABSTRACT
Meteorological inputs are of great importance when implementing an air quality prediction system. In this contribution, the Weather Research and Forecast (WRF-ARW) model was used to compare the performance of the different cumulus, microphysics and Planet Boundary Layer parameterizations over Bogotá, Colombia. Surface observations were used for comparison and the evaluated meteorological variables include temperature, wind speed and direction and relative humidity. Differences between parameterizations were observed in meteorological variables and Betts-Miller-Janjic, Morrison 2-moment and BouLac schemes proved to be the best parameterizations for cumulus, microphysics and PBL, respectively. As a complement to this study, a WRF-Large Eddy Simulation was conducted in order to evaluate model results with finer horizontal resolution for air quality purposes.

Cite this paper
Reboredo, B. , Arasa, R. and Codina, B. (2015) Evaluating Sensitivity to Different Options and Parameterizations of a Coupled Air Quality Modelling System over Bogotá, Colombia. Part I: WRF Model Configuration. Open Journal of Air Pollution, 4, 47-64. doi: 10.4236/ojap.2015.42006.
References
[1]   Ritter, M., Müller, D., Tsai, M.-Y. and Parlow, E. (2013) Air Pollution Modeling over Very Complex Terrain: An Evaluation of WRF-Chem over Switzerland for Two 1-Year Periods. Atmospheric Research, 132-133, 209-222.
http://dx.doi.org/10.1016/j.atmosres.2013.05.021

[2]   Larsen, B. (2004) Cost of Environmental Damage in Colombia: A Socio-Economic and Environmental Health Risk Assessment. Report Prepared for the Ministry of Environment, Housing and Land Development Republic of Colombia.

[3]   Crutzen, P.J. (2004) New Directions: The Growing Urban Heat and Pollution “Island” Effect-Impact on Chemistry and Climate. Atmospheric Environment, 38, 3539-3540.
http://dx.doi.org/10.1016/j.atmosenv.2004.03.032

[4]   Lozano, N. (2004) Air Pollution in Bogotá, Colombia: A Concentration-Response Approach. Desarrollo y Sociedad, 54, 133-177.

[5]   Zárate, E., Belalcázar, L.C., Clappier, A., Manzib, V. and Van den Bergh, H. (2007) Air Quality Modelling over Bogota, Colombia: Combined Techniques to Estimate and Evaluate Emission Inventories. Atmospheric Environment, 41, 6302-6318.
http://dx.doi.org/10.1016/j.atmosenv.2007.03.011

[6]   Rojas, N.Y. and Pe?azola, N.E. (2012) Desagregación de inventarios de emisiones. Bogotá como caso de estudio, Editorial Académica Espa?ola.

[7]   Arasa, R., Lozano-García, A. and Codina, B. (2014) Evaluating Mitigation Plans over Traffic Sector to Improve NO2 Levels in Andalusia (Spain) Using a Regional-Local Scale Photochemical Modelling System. Open Journal of Air Pollution, 3, 70-86.
http://dx.doi.org/10.4236/ojap.2014.33008

[8]   Jorquera, H. and Barraza, F. (2012) Source Apportionment of Ambient PM2.5 in Santiago, Chile: 1999 and 2004 Results. Science of the Total Environment, 435-436, 418-429.
http://dx.doi.org/10.1016/j.scitotenv.2012.07.049

[9]   Saide, P.E, Carmichael, G.R., Spak, N.S., Gallardo, L., Osses, A.E., Mena-Carrasco, M.A. and Pagowski, M. (2011) Forecasting Urban PM10 and PM2.5 Pollution Episodes in Very Stable Nocturnal Conditions and Complex Terrain Using WRF-Chem CO Tracer Model. Atmospheric Environment, 45, 2769-2780.
http://dx.doi.org/10.1016/j.atmosenv.2011.02.001

[10]   Jiménez, J. (2012) Urban Mixing Height in Mountains Terrain. An ARW Simulation for Aburra Valley (Colombia). Paper Presented at the 13th Annual WRF Users, Workshop.

[11]   Rincón, M.A. (2012) Acoplamiento del modelo de mesoescala WRF al modelo de calidad del aire Calpuff. PhD Thesis, Universidad Nacional de Colombia, Bogotá.

[12]   Arasa, R. (2011) Modelització i simulació fotoquímica mesoscalar del transport del material particulat i gasos a l’atmosfera. PhD Thesis, Universitat de Barcelona, Barcelona.

[13]   Krieger, J.R., Zhang, J., Atkinson, D.E., Shulski, M.D. and Zhang, X. (2009) Sensitivity of WRF Model Forecasts to Different Physical Parameterizations in the Beaufort Sea Region. 8th Conference on Coastal Atmospheric and Oceanic Prediction and Processes, San Diego, 10 January 2009.

[14]   Hirabayashi, S., Kroll, C.N. and Nowak, D.J. (2011) Component-Based Development and Sensitivity Analyses of an Air Pollutant Dry Deposition Model. Environmental Modelling & Software, 26, 804-816.
http://dx.doi.org/10.1016/j.envsoft.2010.11.007

[15]   Borge, R., Alexandrov, V., del Vas, J.J., Lumbreras, J. and Rodríguez, E. (2008) A Comprehensive Sensitivity Analysis of the WRF Model for Air Quality Applications over the Iberian Peninsula. Atmospheric Environment, 42, 8560-8574.
http://dx.doi.org/10.1016/j.atmosenv.2008.08.032

[16]   Arasa, R., Soler, M.R. and Olid, M. (2012) Numerical Experiments to Determine MM5/WRF-CMAQ Sensitivity to Various PBL and Land-Surface Schemes in North-Eastern Spain: Application to a Case Study in Summer 2009. International Journal of Environment and Pollution, 48, 105-116.

[17]   Sanjay, J. (2008) Assessment of Atmospheric Boundary-Layer Processes Represented in the Numerical Model MM5 for a Clear Sky Day Using LASPEx Observations. Boundary-Layer Meteorology, 129, 159-177.
http://dx.doi.org/10.1007/s10546-008-9298-6

[18]   Srinivas, C.V., Bhaskar Rao, D.V., Yesubabu, V. and Venkatraman, B. (2012) Tropical Cyclone Predictions over the Bay of Bengal Using the High-Resolution Advanced Research Weather. Quarterly Journal of the Royal Meteorological Society, 139, 1810-1825.
http://dx.doi.org/10.1002/qj.2064

[19]   Hariprasad, K.B.R.R., Srinivas, C.V., Bagavath Singh, A., Vijaya Bhaskara Rao, S., Baskaran, R. and Venkatraman, B. (2014) Numerical Simulation and Intercomparison of Boundary Layer Structure with Different PBL Schemes in WRF Using Experimental Observations at a Tropical Site. Atmospheric Research, 145-146, 27-44.
http://dx.doi.org/10.1016/j.atmosres.2014.03.023

[20]   Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.-Y., Wang, W. and Powers, J.G. (2005) A Description of the Advanced Research WRF Version 3. NCAR Tech Notes-475 +STR.

[21]   Jiménez-Guerrero, P., Parra, R. and Baldasano, J.M. (2007) Influence of Initial and Boundary Conditions for Ozone Modeling in Very Complex Terrains: A Case Study in the Northeastern Iberian Peninsula. Environmental Modelling & Software, 22, 1924-1936.

[22]   Zhang, Y., Liu, P., Pun, B. and Seigneur, C. (2006) A Comprehensive Performance Evaluation of MM5-CMAQ for the Summer 1999 Southern Oxidants Study Episode—Part I: Evaluation Protocols, Databases, and Meteorological Predictions. Atmospheric Environment, 40, 4825-4838.
http://dx.doi.org/10.1016/j.atmosenv.2005.12.043

[23]   Bravo, M., Mira, T., Soler, M.R. and Cuxart, J. (2008) Intercomparison and Evaluation of MM5 and Meso-NH Mesoscale Models in the Stable Boundary Layer. Boundary-Layer Meteorology, 128, 77-101.
http://dx.doi.org/10.1007/s10546-008-9269-y

[24]   Seaman, N., Gaudet, B., Zielonka, J. and Stauffer, D. (2009) Sensitivity of Vertical Structure in the Stable Boundary Layer to Variations of the WRF Model’s Mellor-Yamada-Janjic Turbulence Scheme. Paper presented at the 10th WRF Users’ Workshop, 23-26 June 2009.

[25]   Pielke Sr., R.A. (2002) Mesoscale Meteorological Modeling. 2nd Edition, Academic Press, San Diego.

[26]   Carvalho, D., Rocha, A., Gómez-Gesteira, M. and Santos, C. (2012) A Sensitivity Study of the WRF Model in Wind Simulation for an Area of High Wind Energy. Environmental Modelling & Software, 33, 23-34.
http://dx.doi.org/10.1016/j.envsoft.2012.01.019

[27]   Denby, B., Larssen, S., Guerreiro, C., Douros, J., Moussiopoulos, N., Fragkou, L., Gauss, M., Olesen, H. and Miranda, A.I. (2008) Guidance on the Use of Models for the European Air Quality Directive. ETC/ACC Report.

[28]   Emery, C. and Tai., E. (2001) Enhanced Meteorological Modeling and Performance Evaluation for Two Texas Ozone Episodes. Final Report Submitted to Texas Natural Resources Conservation Commission, prepared by ENVIRON, International Corp., Novato.

[29]   Jiménez-Guerrero, P., Jorba, O., Balsadano, J.M. and Gassó, S. (2008) The Use of a Modelling System as a Tool for Air Quality Management: Annual High-Resolution Simulations and Evaluation. Science of the Total Environment, 390, 323-340.
http://dx.doi.org/10.1016/j.scitotenv.2007.10.025

[30]   Soler, M.R., Arasa, R., Merino, M., Olid, M. and Ortega, S. (2011) Modelling Local Seabreeze Flow and Associated Dispersion Patterns over a Coastal Area in North-East Spain: A Case Study. Boundary-Layer Meteorology, 140, 37-56.
http://dx.doi.org/10.1007/s10546-011-9599-z

[31]   Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A. (1997) Radiative Transfer for Inhomogeneous Atmosphere: RRTM, a Validated Correlated-k Model for the Long-Wave. Journal of Geophysical Research, 102, 16663-16682.
http://dx.doi.org/10.1029/97JD00237

[32]   Dudhia, J. (1989) Numerical Study of Convection Observed during the Winter Monsson Experiment Using a Meso-scale Two-Dimensional Model. Journal of Atmospheric Sciences, 46, 3077-3104.
http://dx.doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2

[33]   Chen, F. and Dudhia, J. (2001) Coupling an Advanced Land Surface-Hydrology Model with the Penn State-NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Monthly Weather Review, 129, 569-585.
http://dx.doi.org/10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2

[34]   Kain, J.S. (2004) The Kain-Fritsch Convective Parameterization: An Update. Journal of Applied Meteorology, 43, 170-181. http://dx.doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2

[35]   Janji?, Z.I. (1994) The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer and Turbulence Closure Schemes. Monthly Weather Review, 122, 927-945.
http://dx.doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2

[36]   Janjic, Z.I. (2000) Comments on Development and Evaluation of a Convective Scheme for Use in Climate Models. Journal of Atmospheric Sciences, 57, 3686.
http://dx.doi.org/10.1175/1520-0469(2000)057<3686:CODAEO>2.0.CO;2

[37]   Grell, G.A. and Freitas, S.R (2013) A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modelling. Atmospheric Chemistry and Physics, 13, 23845-23893.
http://dx.doi.org/10.5194/acpd-13-23845-2013

[38]   Hong, S.-Y., Dudhia, J. and Chen, S.-H. (2004) A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Monthly Weather Review, 132, 103-120.
http://dx.doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2

[39]   Lin, Y. and Colle, B.A. (2011) A New Bulk Microphysical Scheme That Includes Varying Degree of Riming and Particle Habits. Monthly Weather Review, 139, 1036-1047.
http://dx.doi.org/10.1175/2010MWR3299.1

[40]   Morrison, H., Thompson, G. and Tatarskii, V. (2009) Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of Oneand Two-Moment Schemes. Monthly Weather Review, 137, 991-1007.
http://dx.doi.org/10.1175/2008MWR2556.1

[41]   Pérez, C., Jiménez, P., Jorba, O., Sicard, M. and Baldasano, J. (2006) Influence of the PBL Scheme on High-Resolution Photochemical Simulations in an Urban Coastal Area over the Western Mediterranean. Atmospheric Environment, 40, 5274-5297.
http://dx.doi.org/10.1016/j.atmosenv.2006.04.039

[42]   Hong, S.-Y., Noh, Y. and Dudhia, J. (2006) A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Monthly Weather Review, 134, 2318-2341.
http://dx.doi.org/10.1175/MWR3199.1

[43]   Pleim, J.E. (2007) A Combined Local and Non-Local Closure Model for the Atmospheric Boundary Layer. Part I: Model Description and Testing. Journal of Applied Meteorology and Climatology, 46, 1383-1395.
http://dx.doi.org/10.1175/JAM2539.1

[44]   Sukoriansky, S., Galperin, B. and Perov, V. (2005) Application of a new Spectral Theory of Stable Stratified Turbulence to the Atmospheric Boundary Layer over Sea Ice. Boundary-Layer Meteorology, 117, 231-257.
http://dx.doi.org/10.1007/s10546-004-6848-4

[45]   Nakanishi, M. and Niino, H. (2006) An Improved Mellor-Yamada Level 3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog. Boundary-Layer Meteorology, 119, 397-407.
http://dx.doi.org/10.1007/s10546-005-9030-8

[46]   Grenier, H. and Bretherton, C.S. (2001) A Moist PBL Parameterization for Large-Scale Models and Its Application to Subtropical Cloud-Topped Marine Boundary Layers. Monthly Weather Review, 129, 357-377.
http://dx.doi.org/10.1175/1520-0493(2001)129<0357:AMPPFL>2.0.CO;2

[47]   Bougeault, P. and Lacarrère, P. (1989) Parameterization of Orography-Induced Turbulence in a Mesobeta-Scale Model. Monthly Weather Review, 117, 1872-1890.
http://dx.doi.org/10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2

[48]   Bretherton, C.S. and Park, S. (2009) A New Moist Turbulence Parameterization in the Community Atmosphere Model. Journal of Climate, 22, 3422-3448.
http://dx.doi.org/10.1175/2008JCLI2556.1

[49]   Angevine, W.M., Jiang, H. and Mauritsen, T. (2010) Performance of an Eddy Diffusivity-Mass Flux Scheme for Shallow Cumulus Boundary Layers. Monthly Weather Review, 138, 2895-2912.
http://dx.doi.org/10.1175/2010MWR3142.1

[50]   Ching, J. (2011) Fine Scale Meteorology & Air Quality Models. Urban Forecasting, Planning and Assessment Tools. Croucher Advanced Study Institute, Hong Kong.

[51]   Kusaka, H., Kondo, H., Kikegawa, Y. and Kimura, F. (2001) A Simple Singer-Layer Urban Canopy Model for Atmospheric Models: Comparison with Multi-Layer and Slab Models. Boundary-Layer Meteorology, 101, 329-358.
http://dx.doi.org/10.1023/A:1019207923078

[52]   Martilli, A., Grossmann Clarke, S., Tewari, M. and Manning K.W. (2009) Description of the Modifications Made in WRF.3.1 and Short User’s Manual of BEP.

[53]   Isakov, V., Irwin, J.S. and Ching, J. (2006) Using CMAQ for Exposure Modeling and Characterizing the Subgrid Variability for Exposure Estimates. Journal of Applied Meteorology and Climatology, 46, 1354-1371.
http://dx.doi.org/10.1175/JAM2538.1

[54]   Stein, A.F., Isakov, V., Godowitch, J. and Draxler, R.R. (2006) Combining HYSPLIT and CMAQ to Resolve Urban Scale Features: An Example of Application in Houston, TX. CMAS Conference.

[55]   Isakov, V., Touma, J.S., Burke, J., Lobdell, D.T., Palma, T., Rosenbaum, A. and ?zkaynak, H. (2009) Combining Regional-and Local-Scale Air Quality Models with Exposure Models for Use in Environmental Health Studies. Journal of Air and Waste Management, 59, 461-472.
http://dx.doi.org/10.3155/1047-3289.59.4.461

[56]   Herwehe, J., Ching, J.S. and Swall, J.L. (2004) Quantifying Subgrid Pollutant Variability in Eulerian Air Quality Models. 5th Symposium on the Urban Environment, Vancouver, 23-27 August 2004.

[57]   Queen, A. and Zhang, Y. (2008) Examining the Sensitivity of MM5-CMAQ Predictions to Explicit Microphysics Schemes and Horizontal Grid Resolutions, Part II—PM Concentrations and Wet Deposition Predictions. Atmospheric Environment, 42, 3856-3868.
http://dx.doi.org/10.1016/j.atmosenv.2007.12.066

 
 
Top