[1] Guermond, J.L. and Salgado, A. (2009) A Splitting Method for Incompressible Flows with Variable Density Based on a Pressure Poisson Equation. Journal of Computational Physics, 228, 2834-2846.
http://dx.doi.org/10.1016/j.jcp.2008.12.036
[2] Pyo, J.H. and Shen, J. (2007) Gauge-Uzawa Methods for Incompressible Flows with Variable Density. Journal of Computational Physics, 221, 181-197.
http://dx.doi.org/10.1016/j.jcp.2006.06.013
[3] Guermond, J.L. and Quartapelle, L. (2000) A Projection FEM for Variable Density Incompressible Flows. Journal of Computational Physics, 165, 167-188.
http://dx.doi.org/10.1006/jcph.2000.6609
[4] Chorin, A.J. (1968) Numeriacl Solution of the Navier-Stokes Equations. Mathematics of Computation, 22, 745-762.
http://dx.doi.org/10.1090/S0025-5718-1968-0242392-2
[5] Chorin, A.J. (1969) On the Convergence of Discrete Approximations to the Navier-Stokes Equations. Mathematics of Computation, 23, 341-353. http://dx.doi.org/10.1090/S0025-5718-1969-0242393-5
[6] Temam, R. (1977) Navier-Stokes Equations, Studies in Mathematics and Its Applications 2. North-Holland, Amsterdam.
[7] Temam, R. (1969) Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II). Archive for Rational Mechanics and Analysis, 33, 377-385.
http://dx.doi.org/10.1007/BF00247696
[8] Guermond, J.L., Minev, P. and Shen, J. (2006) An Overview of Projection Methods for Incompressible Flows. Computer Methods in Applied Mechanics and Engineering, 195, 6011-6045.
http://dx.doi.org/10.1016/j.cma.2005.10.010
[9] Fraigneau, Y., Guermond, J.L. and Quartapelle, L. (2001) Approximation of Variable Density Incompressible Flows by Means of Finite Elements and Finite Volumes. Communications in Numerical Methods in Engineering, 17, 893-902.
http://dx.doi.org/10.1002/cnm.452
[10] Puckett, G.P., Almgren, A.S., Bell, J.B., Marcus, D.L. and Rider, W. (1997) A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows. Journal of Computational Physics, 130, 269-282.
http://dx.doi.org/10.1006/jcph.1996.5590
[11] Buscaglia, G.C. and Codina, R. (2000) Fourier Analysis of an Equal-Order Incompressible Flow Solver Stabilized by Pressure Gradient Projection. International Journal for Numerical Methods in Fluids, 34, 65-92.
http://dx.doi.org/10.1002/1097-0363(20000915)34:1<65::AID-FLD56>3.0.CO;2-J
[12] Bell, J.B. and Marcus, D.L. (1992) A Second Order Projection Method for Variable-Density Flows. Journal of Computational Physics, 101, 334-348. http://dx.doi.org/10.1016/0021-9991(92)90011-M
[13] Almgren, A.S., Bell, J.B., Colella, P., Howell, L.H. and Welcome, M.L. (1998) A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations. Journal of Computational Physics, 142, 1-46. http://dx.doi.org/10.1006/jcph.1998.5890
[14] Li, Y., Mei, L., Ge, J. and Shi, F. (2013) A New Fractional Time-Stepping Method for Variable Density Incompressible Flows. Journal of Computational Physics, 242, 124-137.
http://dx.doi.org/10.1016/j.jcp.2013.02.010
[15] Calgaro, C., Creuse, E. and Goudon, T. (2008) An Hybrid Finite Volume-Finite Element Method for Variable Density Incompressible Flows. Journal of Computational Physics, 227, 4671-4696.
http://dx.doi.org/10.1016/j.jcp.2008.01.017
[16] Guermond, J.L. (1999) Stabilization of Galerkin Approximations of Transport Equations by Subgrid Modeling. ESAIM: Mathematical Modelling and Numerical Analysis, 33, 1293-1316.
http://dx.doi.org/10.1051/m2an:1999145
[17] Pyo, J. and Shen, J. (2007) Gauge-Uzawa Methods for Incompressible Flows with Variable Density. Journal of Computational Physics, 221, 181-197.
http://dx.doi.org/10.1016/j.jcp.2006.06.013
[18] Boukir, K. and Maday, Y. (1997) A High-Order Characteristics/Finite Element Method for the Incompressible Navier-Stokes Equations. International Journal for Numerical Methods in Fluids, 25, 1421-1454.
http://dx.doi.org/10.1002/(SICI)1097-0363(19971230)25:12<1421::AID-FLD334>3.0.CO;2-A
[19] Douglas, J., Thomas, F. and Russell, T. (1982) Numerical Method for Convection-Dominated Diffusion Problem Based on Combining the Method of Characteristics with Finite Element of Finite Difference Procedures. SIAM Journal on Numerical Analysis, 19, 871-885.
http://dx.doi.org/10.1137/0719063
[20] Pironneau, O. (1982) On the Transport-Diffusion Algorithm and Its Application to the Navier-Stokes Equations. Numerische Mathematik, 38, 309-332.
http://dx.doi.org/10.1007/BF01396435
[21] Süli, E. (1998) Convergence and Nonlinear Stability of the Lagrange-Galerkin Method for the Navier-Stokes Equations. Numerische Mathematik, 53, 459-483.
[22] Temam, R. (2001) Navier-Stokes Equations, Theory and Numerical Analysis. Reprint of the 1984 Edition, AMS Chelsea Publishing, Providence.
[23] Girault, V. and Raviart, P.A. (1986) Finite Element Methods for Navier-Stokes Equations. Springer Series in Computational Mathematics, Vol. 5, Springer-Verlag, Berlin.
http://dx.doi.org/10.1007/978-3-642-61623-5
[24] Ern, A. and Guermond, J.L. (2004) Theory and Practice of Finite Elements. Applied Mathematical Sciences, Vol. 159, Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4757-4355-5
[25] Adams, R.A. (1975) Sobolev Spaces. Academic Press, New York.
[26] Evans, L.C. (1998) Partial Differential Equations. American Mathematical Society, Providence.
[27] Chen, Z. (2005) Finite Element Methods and Their Applications (Scientific Computation). Springer, Berlin.
[28] Benítez, M. and Bermúdez, A. (2011) A Second Order Characteristics Finite Element Scheme for Natural Convection Problems. Journal of Computational and Applied Mathematics, 235, 3270-3284.
http://dx.doi.org/10.1016/j.cam.2011.01.007
[29] Arbogast, T. and Wheeler, M.F. (1995) A Characteristics-Mixed Finite Element Method for Advection-Dominated Transport-Problems. SIAM Journal on Numerical Analysis, 32, 404-424.
http://dx.doi.org/10.1137/0732017
[30] Turek, S. (1999) Efficient Solvers for Incompressible Flow Problems. Lecture Notes in Computer Science, Springer, Berlin.
http://dx.doi.org/10.1007/978-3-642-58393-3
[31] Codina, R., Blasco, J., Buscaglia, G. and Huerta, A. (2001) Implementation of a Stabilized Finite Element Formulation for the Incompressible Navier-Stokes Equations Based on a Pressure Gradient Projection. International Journal for Numerical Methods in Fluids, 37, 419-444.
http://dx.doi.org/10.1002/fld.182
[32] Dohrmann, C. and Bochev, P. (2004) A Stabilized Finite Element Method for the Stokes Problem Based on Polynomial Pressure Projections. International Journal for Numerical Methods in Fluids, 46, 183-201.
http://dx.doi.org/10.1002/fld.752
[33] He, Y. and Li, J. (2009) Convergence of Three Iterative Methods Based on the Finite Element Discretization for the Stationary Navier-Stokes Equations. Computer Methods in Applied Mechanics and Engineering, 198, 1351-1359.
http://dx.doi.org/10.1016/j.cma.2008.12.001
[34] Guermond, J.L. and Salgado, A.J. (2011) Error Analysis of a Fractional Time-Stepping Technique for Incompressible Flows with Variable Density. SIAM Journal on Numerical Analysis, 49, 917-944.
http://dx.doi.org/10.1137/090768758
[35] Tryggvason, G. (1988) Numerical Simulations of the Rayleigh-Taylor Instability. Journal of Computational Physics, 75, 253-282.
http://dx.doi.org/10.1016/0021-9991(88)90112-X
[36] Schneider, T., Botta, N., Geratz, K.J. and Klein, R. (1999) Extension of Finite Volume Compressible Flow Solvers to Multidimensional Variable Density Zero Mach Number Flows. Journal of Computational Physics, 155, 248-286.
http://dx.doi.org/10.1006/jcph.1999.6327
[37] Rasthofer, U., Henke, F., Wall, W.A. and Gravemeier, V. (2011) An Extended Residual-Based Variational Multiscale Method for Two-Phase Flow Including Surface Tension. Computer Methods in Applied Mechanics and Engineering, 200, 1866-1876.
http://dx.doi.org/10.1016/j.cma.2011.02.004
[38] Fries, T.P. (2010) Level Set Method for Two-Phase Incompressible Flows under Magnetic Fields. Computer Physics Communications, 181, 999-1007.
http://dx.doi.org/10.1016/j.cpc.2010.02.002
[39] Fries, T.P. (2009) The Intrinsic XFEM for Two-Phase Flows. International Journal for Numerical Methods in Fluids, 60, 437-471.
http://dx.doi.org/10.1002/fld.1901