AJPS  Vol.2 No.2 , June 2011
Biodiversity in a Tomato Germplasm for Free Amino Acid and Pigment Content of Ripening Fruits
Abstract: Free amino acid and pigment composition in fruits at two ripening stages from a selected tomato germplasm was stu-died. The aims were contributing to knowledge on variability of ripening metabolism and identifying more consis-tently the genetic background of the plant material under analysis. Significant differences (p < 0.05) were found among ripening stages and among genotypes within ripening stage for all amino acids and pigments except by asparagine, alanine and chlorophyll b contents. The highest relative amino acid content corresponded to glutamate, glutamine, and GABA though some genotypes had relatively high asparagine content. Glutamate, glutamine and GABA performed oppositely: the former increased along ripening while the latter two decreased in their relative content. A Principal Components (PC) analysis was applied, determining that metabolites having the greatest contribution to general variability were threonine, serine, glutamate, glutamine, glycine, isoleucine, leucine, tyrosine, phenylalanine, lycopene and beta- carotene, which showed the highest association with PC1. Alanine and chlorophylls a and b were highly associated to PC2. These two first PC explained the 62% of the total variation, and genotypes were distributed according to the ripening stage in their coordinates. Accordingly, a Hierarchical Clustering resulted in a dendrogram having a relatively high cophenetic correlation (0.70), in which two well defined groups were obtained according to ripening stage. These results verified the existence of variability in the metabolism of ripening fruit for amino acids and pigments, and allowed to identify unequivocally a set of selected tomato germplasm according to the fruit metabolic profiles in these two ripening stages.
Cite this paper: nullG. Pratta, G. Rodríguez, R. Zorzoli, L. Picardi and E. Valle, "Biodiversity in a Tomato Germplasm for Free Amino Acid and Pigment Content of Ripening Fruits," American Journal of Plant Sciences, Vol. 2 No. 2, 2011, pp. 255-261. doi: 10.4236/ajps.2011.22027.

[1]   J. J. Giovannoni “Genetic regulation of fruit development and ripening”, Plant Cell, Vol. 16, September 2004, pp. 170-180 (Supplement).

[2]   E. M. Valle, S. B. Boggio and H. W. Heldt, “Free amino acids composition of phloem sap and growing fruit of Lycopersicon esculentum”, Plant Cell Physiology, Vol. 39, June 1998, pp. 458-461.

[3]   S. Bortolotti, S. B. Boggio, L. Delgado, E. G. Orellano and E.M. Valle, “Different induction patterns of glutamate metabolising enzymes in ripening fruits of the tomato mutant green flesh”, Physiologia Plantarum, Vol. 119, May 2003, pp. 384-391.

[4]   S. B. Boggio, J. F. Palatnik, H. W. Heldt and E. M. Valle, “Changes in the aminoacid composition and nitrogen metabolizing enzymes in ripening fruits of Lycopersicon esculentum Mill.”, Plant Science, Vol. 159, March 2000, pp. 125-133.

[5]   G. R. Rodríguez, G. R. Pratta, D. R. Liberatti, R. Zorzoli and L.A. Picardi, “Inheritance of fruit shelf life and other tomato fruit quality traits estimated from crosses and backcrosses of selected parents”, Euphytica, Vol. 176, July 2010, pp. 137-147.

[6]   G. Pratta, R. Zorzoli, S. B. Boggio, L. A. Picardi and E. M. Valle, “Glutamine and glutamate levels and related metabolizing enzymes in tomato genotypes with different shelf-life”, Scientia Horticulturae, Vol. 100, April 2004, pp. 341-347.

[7]   J. A. Labate, S. Grandillo, T. Fulton, S. Mu?os, A. L. Caicedo, I. Peralta, Y. Ji, R. T. Chetelat, J. W. Scout, M. J. Gonzalo, D. Francis, W. Yang, E. van der Knaap, A. M. Baldo, B. Smith-White, L. A. Mueller, J. P. Prince, N. E. Blanchard, D. V. Storey, M. R. Stevens, M. D. Robbins, J. F. Wang, B. E. Liedl, M. A. O’Connell, J. R. Stommel, K. Auki, Y. Iijima, A. J. Slade, S. R. Hurst, D. Loeffler, M. N. Steine, D. Vafeados, C. McGuire, C. Freeman, A. Amen, J. Goodstal, D. Facciotti, J. van Eck and M. Causse

[8]   N. Schauer, D. Zamir and A. Fernie, “Metabolic profiling of leaves and fruits of wild species tomato: a survey of the Solanum lycopersicum complex”, Journal of Experimental Botany, Vol. 56, April 2005, pp. 297-307 (Special Issue).

[9]   R. Zorzoli, G. Pratta y L. A. Picardi, “Variabilidad para la vida postcosecha y el peso de los frutos en tomate para familias F3 de un híbrido interespecífico”, Pesquisa Agropecuaria Brasileira, Vol. 35, November 2000, pp. 2423-2427.

[10]   G. R. Rodriguez, G. R. Pratta, R. Zorzoli and L. A. Picardi, “Recombinant lines obtained from an interspecific cross among Lycopersicon species selected by fruit weight and fruit shelf life”, Journal of the American Society for Horticultural Science, Vol. 131, October 2006, pp. 651-656.

[11]   M. Gallo, G. R. Rodríguez, R. Zorzoli, L. A. Picardi and G.R. Pratta, “Proteómica de la madurez del tomate”, Revista de Investigaciones de la Facultad de Ciencias Agrarias de la Universidad Nacional de Cuyo, Vol. 42, December 2010, pp. 119-133.

[12]   G. R. Pratta, G. R. Rodríguez, R. Zorzoli, E. M. Valle and L.A. Picardi, 260 “Phenotypic and molecular characterization of selected tomato recombinant inbred lines derived from a cross Solanum lycopersicum x S. pimpinellifolium”, Journal of Genetics, 2001, in press.

[13]   S. S. Shapiro and M. B. Wilk, “An analysis of variance test for normality complete samples”, Biometrika, June 1965, Vol. 52, pp. 591-611.

[14]   M. Kearsey and H. Pooni, “The genetical analysis of quantitative traits”, Chapman and Hall, Great Britain, May 1996.

[15]   Q. S. Du, Z. Q. Jiang, W. Z. He, D .P. Li and K. C. Chou, “Amino acid principal component analysis (AAPCA) and its applications in protein structural class prediction”, Journal of Biomolecules Structucture and Dynamics, Vol. 23, August 2006, pp. 635-640.

[16]   B.G. Forde and P.J. Lea, “Glutamate in plants: metabolism, regulation, and signaling”, Journal of Experimental Botany, Vol. 58, November 2007, pp. 2339-2358.

[17]   A. Sorrequieta, G. Ferraro, S. B. Boggio and E. M. Valle, “Free amino acid production during tomato fruit ripening: a focus on L-glutamate”, Amino acids, September 2009, DOI 10.1007/s00726-009-0373-1.

[18]   F. Carrari and A. Fernie, “Metabolic regulation underlying tomato fruit development”, Journal of Experimental Botany, Vol. 57, February 2007, pp. 1883-1897.

[19]   F. Mounet, M. Lemaire-Chamley, M.I. Maucourt, C. Cabasson, J.L. Giraudel, C. Deborde, R. Lessire, P. Gallusci, A. Bertrand, M. Gaudillere, C. Rothan, D. Rolin and A. Moinga, “Quantitative metabolic profiles of tomato flesh and seeds during fruit development: complementary analysis with ANN and PCA”, Metabolomics, Vol. 3, April 2007, pp. 273-287.

[20]   Y. Semel, N. Schauer, U. Roessner, D. Zamir and A.R. Ferni, “Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype” Metabolomics, Vol. 3, April 2007, pp. 289-295.

[21]   S. D. Roper and N. Chaudhar “Processing umami and other tastes in mammalian taste buds”, Annals of the New York Academy of Sciences, Vol. 1170, July 2009, pp. 60-65.