[1] Nishinari, K. (1988) Food hydrocolloids in Japan. National Food Research Institute, Tsukuba.
[2] Peng, I.C., Quass, D.W., Dayton, W.R. and Allen, C.E. (1984) Physicochemical and Functional Properties of Soybean 11S Globulin—A Review. Cereal Chemistry, 61, 480-490.
[3] Molina, E., Papadopoulou, A. and Ledward, D.A. (2001) Emulsifying Properties of High Pressure Treated Soy Protein Isolate and 7S and 11S Globulins. Food Hydrocolloids, 15, 263-269.
http://dx.doi.org/10.1016/S0268-005X(01)00023-6
[4] Puppo, C. and Chapleau, N. (2004) Physicochemical Modifications of High-Pressure-Treated Soybean Protein Isolates. Food Chemistry, 52, 1564-1571.
http://dx.doi.org/10.1021/jf034813t
[5] Takenaka, A. and Annaka, H. (2003) Reduction of Paraquat-Induced Pxidative Stress in Rat by Dietary Soy Peptide. Bioscience Biotechnology and Biochemistry, 67, 278-283.
http://dx.doi.org/10.1271/bbb.67.278
[6] Wu, W., Zhang, C. and Hua, Y. (2009) Structural Modification of Soy Protein by the Lipid Peroxidation Product Malondialdehyde. Journal of the Science of Food and Agriculture, 89, 1416-1423.
http://dx.doi.org/10.1002/jsfa.3606
[7] Anderson, J., Johnstone, B. and Cook-Newell, M. (1995) Meta-Analysis of the Effects of Soy Protein Intake on Serum Lipids. England Journal of Medicine, 333, 276-282.
http://dx.doi.org/10.1056/NEJM199508033330502
[8] Hashizume, K. and Watababe, T. (1979) Influence of Heating Temperature on Conformational Changes of Soybean Proteins. Agricultural and Biological Chemistry, 43, 683-690.
http://dx.doi.org/10.1271/bbb1961.43.683
[9] Zhang, H., Li, L., Tatsumi, E. and Kotwal, S. (2003) Influence of High Pressure on Conformational Changes of Soybean Glycinin. Innovative Food Science and Emerging Technologies, 4, 269-275.
http://dx.doi.org/10.1016/S1466-8564(03)00043-2
[10] Speroni, F., Beaumal, V., Lamballerie, Md., Anton, M., Anona, M.C. and Puppo, M.C. (2009) Gelation of Soybean Proteins Induced by Sequential High-Pressure and Thermal Treatments. Food Hydrocolloids, 23, 1433-1442.
http://dx.doi.org/10.1016/j.foodhyd.2008.11.008
[11] Song, X., Zhoub, C., Fuc, F., Chenc, Z. and Wub, Q. (2013) Effect of High-Pressure Homogenization on Particle Size and Film Properties of Soy Protein Isolate. Industrial Crops and Products, 43, 538-544.
http://dx.doi.org/10.1016/j.indcrop.2012.08.005
[12] Speroni, F., Anón, M.C. and Lamballerie, M.D. (2010) Effects of Calcium and High Pressure on Soybean Proteins: A Calorimetric Study. Food Research International, 43, 1347-1355.
http://dx.doi.org/10.1016/j.foodres.2010.03.022
[13] Gupta, S., Hevia, D., Patchva, S., Park, B., Koh, W. and Aggarwal, B. (2012) Upsides and Downsides of Reactive Oxygen Species for Cancer: The Roles of Reactive Oxygen Species in Tumorigenesis, Prevention, and Therapy. Antioxidants & Redox Signaling, 16, 1295-1322.
http://dx.doi.org/10.1089/ars.2011.4414
[14] Turrens, J. (2003) Mitochondrial Formation of Reactive Oxygen Species. Journal of Physiology, 552, 335-344.
http://dx.doi.org/10.1113/jphysiol.2003.049478
[15] Orozco, R.F., Piskula, M.K., Zielinski, H., Kozlowska, H., Frias, J. and Vidal-Valverde, C. (2006) Germination as a Process to Improve the Antioxidant Capacity of Lupinus angustifolius L. var. Zapaton. European Food Research and Technology, 223, 495-502.
http://dx.doi.org/10.1007/s00217-005-0229-1
[16] Zielinska, D., Frias, J., Piskula, M.K., Kozlowska, H., Zielinsk, H. and Vidal-Valverde, C. (2008) Evaluation of the Antioxidant Capacity of Lupin Sprouts Germinated in the Presence of Selenium. European Food Research and Technology, 227, 1711-1720.
http://dx.doi.org/10.1007/s00217-008-0898-7
[17] Hengst, C., Werner, S., Müller, L., Frohlich, K. and Bohm, V. (2009) Determination of the Antioxidant Capacity: Influence of the Sample Concentration on the Measured Values. European Food Research and Technology, 230, 249-254.
http://dx.doi.org/10.1007/s00217-009-1166-1
[18] Zhang, Y., Du, R., Wang, L. and Zhang, H. (2010) The Antioxidative Effects of Probiotic Lactobacillus casei Zhang on the Hyperlipidemic Rats. European Food Research and Technology, 231, 151-158.
[19] Maki, R.G. (2010) Small Is Beautiful: Insulin-Like Growth Factors and Their Role in Growth, Development, and Cancer. Journal of Clinical Oncology, 28, 4985-4995.
http://dx.doi.org/10.1200/JCO.2009.27.5040
[20] Townsend, D. and Tew, K. (2003) The Role of Glutathione-S-Transferase in Anti-Cancer Drug Resistance. Oncogene, 22, 7369-7375.
http://dx.doi.org/10.1038/sj.onc.1206940