AMI  Vol.5 No.2 , April 2015
Preclinical Evaluation of CD40-Directed Immunotherapy in B-Cell Lymphoma Using [18F]Fluorothymidine-PET
Abstract: Background: Inhibition of the lymphoma surface antigen CD40 by the antagonistic CD40 antibody NVP-HCD122 (HCD122) demonstrates activity in various lymphoma subtypes. In this preclinical in vivo study we examined the suitability of positron emission tomography (PET) using the thymidine analogue 3’-deoxy-3’-[18F]fluorothymidine (FLT) for early response assessment upon HCD122 treatment in diffuse large B cell lymphoma (DLBCL). Methods: Immunodeficient mice bearing human DLBCL xenografts (SU-DHL-4) received weekly intraperitoneal injections of HCD122. Tumor growth was followed up until Day 14. Molecular imaging with FLT-PET was performed before (Day 0) and after start of therapy (Day 2 and Day 7). On Day 14 lymphoma xenografts were explanted for immunohistochemical analysis to correlate PET findings with CD40 surface expression on tumor tissue. Results: Treatment with HCD122 significantly delayed tumor growth resulting in a tumor growth inhibition of 45% on Day 14. Significant reduction of tumor-to-background ratio (TBR) of FLT-PET was seen in treated animals on Day 7 and preceded change of tumor volume, thus predicting therapy response to HCD122. Immunohistochemical analysis of xenografts revealed significantly higher CD40 expression on treated than on untreated tissue. Moreover, we found a significant correlation between CD40 expression and FLT-PET response for xenograft tumor treated with HCD122. Conclusions: Treatment of DLBCL with the antagonistic CD40 antibody HCD122 can be monitored with FLT-PET as early as seven days after commencement of therapy and seems to increase CD40 expression on tumor tissue.
Cite this paper: Graf, N. , Li, Z. , Herrmann, K. , Aichler, M. , Slawska, J. , Walch, A. , Peschel, C. , Schwaiger, M. , Buck, A. , Dechow, T. and Keller, U. (2015) Preclinical Evaluation of CD40-Directed Immunotherapy in B-Cell Lymphoma Using [18F]Fluorothymidine-PET. Advances in Molecular Imaging, 5, 17-28. doi: 10.4236/ami.2015.52002.

[1]   Coiffier, B., Lepage, E., Briere, J., Herbrecht, R., Tilly, H., Bouabdallah, R., Morel, P., Van Den Neste, E., Salles, G., Gaulard, P., Reyes, F., Lederlin, P. and Gisselbrecht, C. (2002) CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma. The New England Journal of Medicine, 346, 235-242.

[2]   Dalle, S., Dupire, S., Brunet-Manquat, S., Reslan, L., Plesa, A. and Dumontet, C. (2009) In Vivo Model of Follicular Lymphoma Resistant to Rituximab. Clinical Cancer Research, 15, 851-857.

[3]   Hiraga, J., Tomita, A., Sugimoto, T., Shimada, K., Ito, M., Nakamura, S., Kiyoi, H., Kinoshita, T. and Naoe, T. (2009) Down-Regulation of CD20 Expression in B-Cell Lymphoma Cells after Treatment with Rituximab-Containing Combination Chemotherapies: Its Prevalence and Clinical Significance. Blood, 113, 4885-4893.

[4]   Planken, E.V., Willemze, R. and Kluin-Nelemans, J.C. (1996) The Role of the CD40 Antigen on Malignant B Cells. Leuk Lymphoma, 22, 229-235.

[5]   Johnson, P.W., Watt, S.M., Betts, D.R., Davies, D., Jordan, S., Norton, A.J. and Lister, T.A. (1993) Isolated Follicular Lymphoma Cells Are Resistant to Apoptosis and Can Be Grown in Vitro in the CD40/Stromal Cell System. Blood, 82, 1848-1857.

[6]   Ghia, P., Boussiotis, V.A., Schultze, J.L., Cardoso, A.A., Dorfman, D.M., Gribben, J.G., Freedman, A.S. and Nadler, L.M. (1998) Unbalanced Expression of bcl-2 Family Proteins in Follicular Lymphoma: Contribution of CD40 Signaling in Promoting Survival. Blood, 91, 244-251.

[7]   Andersen, N.S., Larsen, J.K., Christiansen, J., Pedersen, L.B., Christophersen, N.S., Geisler, C.H. and Jurlander, J. (2000) Soluble CD40 Ligand Induces Selective Proliferation of Lymphoma Cells in Primary Mantle Cell Lymphoma Cell Cultures. Blood, 96, 2219-2225.

[8]   Clodi, K., Asgary, Z., Zhao, S., Kliche, K.O., Cabanillas, F., Andreeff, M. and Younes, A. (1998) Coexpression of CD40 and CD40 Ligand in B-Cell Lymphoma Cells. British Journal of Haematology, 103, 270-275.

[9]   Tournilhac, O., Santos, D.D., Xu, L., Kutok, J., Tai, Y.T., Le Gouill, S., Catley, L., Hunter, Z., Branagan, A.R., Boyce, J.A., Munshi, N., Anderson, K.C. and Treon, S.P. (2006) Mast Cells in Waldenstrom’s Macroglobulinemia Support Lymphoplasmacytic Cell Growth through CD154/CD40 Signaling. Annals of Oncology, 17, 1275-1282.

[10]   Pham, L.V., Tamayo, A.T., Yoshimura, L.C., Lo, P., Terry, N., Reid, P.S. and Ford, R.J. (2002) A CD40 Signalosome Anchored in Lipid Rafts Leads to Constitutive Activation of NF-KappaB and Autonomous Cell Growth in B Cell Lymphomas. Immunity, 16, 37-50.

[11]   Younes, A., Snell, V., Consoli, U., Clodi, K., Zhao, S., Palmer, J.L., Thomas, E.K., Armitage, R.J. and Andreeff, M. (1998) Elevated Levels of Biologically Active Soluble CD40 Ligand in the Serum of Patients with Chronic Lymphocytic Leukaemia. British Journal of Haematology, 100, 135-141.

[12]   Luqman, M., Klabunde, S., Lin, K., Georgakis, G.V., Cherukuri, A., Holash, J., Goldbeck, C., Xu, X., Kadel 3rd, E.E., Lee, S.H., Aukerman, S.L., Jallal, B., Aziz, N., Weng, W.K., Wierda, W., O’Brien, S. and Younes, A. (2008) The Antileukemia Activity of a Human Anti-CD40 Antagonist Antibody, HCD122, on Human Chronic Lymphocytic Leukemia Cells. Blood, 112, 711-720.

[13]   Fanale, M., Assouline, S., Kuruvilla, J., Solal-Céligny, P., Heo, D.S., Verhoef, G., Corradini, P., Abramson, J.S., Offner, F., Engert, A., Dyer, M.J., Carreon, D., Ewald, B., Baeck, J., Younes, A. and Freedman, A.S. (2014) Phase IA/II, Multicentre, Open-Label Study of the CD40 Antagonistic Monoclonal Antibody Lucatumumab in Adult Patients with Advanced Non-Hodgkin or Hodgkin Lymphoma. British Journal of Haematology, 164, 258-265.

[14]   Walsh, K., McKinney, M.S., Love, C., Liu, Q., Fan, A., Patel, A., Smith, J., Beaven, A., Jima, D.D. and Dave, S.S. (2013) PAK1 Mediates Resistance to PI3K Inhibition in Lymphomas. Clinical Cancer Research, 19, 1106-1115.

[15]   Shields, A.F., Grierson, J.R., Dohmen, B.M., Machulla, H.J., Stayanoff, J.C., Lawhorn-Crews, J.M., Obradovich, J.E., Muzik, O. and Mangner, T.J. (1998) Imaging Proliferation in Vivo with [F-18]FLT and Positron Emission Tomography. Nature Medicine, 4, 1334-1336.

[16]   Rasey, J.S., Grierson, J.R., Wiens, L.W., Kolb, P.D. and Schwartz, J.L. (2002) Validation of FLT Uptake as a Measure of Thymidine Kinase-1 Activity in A549 Carcinoma Cells. Journal of Nuclear Medicine, 43, 1210-1217.

[17]   Wagner, M., Seitz, U., Buck, A., Neumaier, B., Schultheiss, S., Bangerter, M., Bommer, M., Leithauser, F., Wawra, E., Munzert, G. and Reske, S.N. (2003) 3’-[18F]Fluoro-3’-Deoxythymidine ([18F]-FLT) as Positron Emission Tomography Tracer for Imaging Proliferation in a Murine B-Cell Lymphoma Model and in the Human Disease. Cancer Research, 63, 2681-2687.

[18]   Herrmann, K., Wieder, H.A., Buck, A.K., Schoffel, M., Krause, B.J., Fend, F., Schuster, T., zum Büschenfelde, C.M., Wester, H.J., Duyster, J., Peschel, C., Schwaiger, M. and Dechow, T. (2007) Early Response Assessment using 3’-Deoxy-3’-[18F]Fluorothymidine-Positron Emission Tomography in High-Grade Non-Hodgkin’s Lymphoma. Clinical Cancer Research, 13, 3552-3558.

[19]   Herrmann, K., Buck, A.K., Schuster, T., Rudelius, M., Wester, H.J., Graf, N., Scheuerer, C., Peschel, C., Schwaiger, M., Dechow, T. and Keller, U. (2011) A Pilot Study to Evaluate 3’-Deoxy-3’-18F-Fluorothymidine PET for Initial and Early Response Imaging in Mantle Cell Lymphoma. Journal of Nuclear Medicine, 52, 1898-1902.

[20]   Graf, N., Herrmann, K., den Hollander, J., Fend, F., Schuster, T., Wester, H.J., Senekowitsch-Schmidtke, R., zum Büschenfelde, C.M., Peschel, C., Schwaiger, M., Dechow, T. and Buck, A.K. (2008) Imaging Proliferation to Monitor Early Response of Lymphoma to Cytotoxic Treatment. Molecular Imaging and Biology, 10, 349-355.

[21]   Li, Z., Graf, N., Herrmann, K., Jünger, A., Aichler, M., Feuchtinger, A., Baumgart, A., Walch, A., Peschel, C., Schwaiger, M., Buck, A., Keller, U. and Dechow, T. (2012) FLT-PET Is Superior to FDG-PET for Very Early Response Prediction in NPM-ALK-Positive Lymphoma Treated with Targeted Therapy. Cancer Research, 72, 5014-5024.

[22]   Graf, N., Herrmann, K., Numberger, B., Zwisler, D., Aichler, M., Feuchtinger, A., Schuster, T., Wester, H.J., Senekowitsch-Schmidtke, R., Peschel, C., Schwaiger, M., Keller, U., Dechow, T. and Buck, A.K. (2013) [18F]FLT Is Superior to [18F]FDG for Predicting Early Response to Antiproliferative Treatment in High-Grade Lymphoma in a Dose-Dependent Manner. European Journal of Nuclear Medicine and Molecular Imaging, 40, 34-43.

[23]   Machulla, H.J., Blocher, A., Kuntzsch, M., Piert, M., Wei, R. and Grierson, J. (2000) Simplified Labeling Approach for Synthesizing 3-Deoxy-3[18F]Fluorothymidine ([18F]FLT). Journal of Radioanalytical and Nuclear Chemistry, 243, 843-846.

[24]   Velders, M.P., van Rhijn, C.M., Oskam, E., Fleuren, G.J., Warnaar, S.O. and Litvinov, S.V. (1998) The Impact of Antigen Density and Antibody Affinity on Antibody-Dependent Cellular Cytotoxicity: Relevance for Immunotherapy of Carcinomas. British Journal of Cancer, 78, 478-483.

[25]   Cheson, B.D. and Leonard, J.P. (2008) Monoclonal Antibody Therapy for B-Cell Non-Hodgkin’s Lymphoma. The New England Journal of Medicine, 359, 613-626.

[26]   Knowles, S.M. and Wu, A.M. (2012) Advances in Immuno-Positron Emission Tomography: Antibodies for Molecular Imaging in Oncology. Journal of Clinical Oncology, 30, 3884-3892.

[27]   Akins, E.J. and Dubey, P. (2008) Noninvasive Imaging of Cell-Mediated Therapy for Treatment of Cancer. Journal of Nuclear Medicine, 49, 180S-195S.

[28]   Aarntzen, E.H., Srinivas, M., De Wilt, J.H., Jacobs, J.F., Lesterhuis, W.J., Windhorst, A.D., Troost, E.G., Bonenkamp, J.J., van Rossum, M.M., Blokx, W.A., Mus, R.D., Boerman, O.C., Punt, C.J., Figdor, C.G., Oyen, W.J. and de Vries, I.J. (2011) Early Identification of Antigen-Specific Immune Responses in Vivo by [18F]-Labeled 3’-Fluoro-3’-Deoxy-Thymidine ([18F]FLT) PET Imaging. Proceedings of the National Academy of Sciences of the United States of America, 108, 18396-18399.

[29]   Nair-Gill, E., Wiltzius, S.M., Wei, X.X., Cheng, D., Riedinger, M., Radu, C.G. and Witte, O.N. (2010) PET Probes for Distinct Metabolic Pathways Have Different Cell Specificities during Immune Responses in Mice. Journal of Clinical Investigation, 120, 2005-2015.

[30]   Greiner, D.L., Hesselton, R.A. and Shultz, L.D. (1998) SCID Mouse Models of Human Stem Cell Engraftment. Stem Cells, 16, 166-177.

[31]   Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.

[32]   Tehrani, O.S. and Shields, A.F. (2013) PET Imaging of Proliferation with Pyrimidines. Journal of Nuclear Medicine, 54, 903-912.

[33]   Shah, C., Miller, T.W., Wyatt, S.K., McKinley, E.T., Olivares, M.G., Sanchez, V., Nolting, D.D., Buck, J.R., Zhao, P., Ansari, M.S., Baldwin, R.M., Gore, J.C., Schiff, R., Arteaga, C.L. and Manning, H.C. (2009) Imaging Biomarkers Predict Response to Anti-HER2 (ErbB2) Therapy in Preclinical Models of Breast Cancer. Clinical Cancer Research, 15, 4712-4721.

[34]   Whisenant, J.G., McIntyre, J.O., Peterson, T.E., Kang, H., Sánchez, V., Manning, H.C., Arteaga, C.L. and Yankeelov, T.E. (2015) Utility of [18F]FLT-PET to Assess Treatment Response in Trastuzumab-Resistant and Trastuzumab-Sensitive HER2-Overexpressing Human Breast Cancer Xenografts. Molecular Imaging and Biology, 17, 119-128.

[35]   Takeuchi, S., Zhao, S., Kuge, Y., Zhao, Y., Nishijima, K., Hatano, T., Shimizu, Y., Kinoshita, I., Tamaki, N. and Dosaka-Akita, H. (2011) 18F-Fluorothymidine PET/CT as an Early Predictor of Tumor Response to Treatment with Cetuximab in Human Lung Cancer Xenografts. Oncology Reports, 26, 725-730.

[36]   Atkinson, D.M., Clarke, M.J., Mladek, A.C., Carlson, B.L., Trump, D.P., Jacobson, M.S., Kemp, B.J., Lowe, V.J. and Sarkaria, J.N. (2008) Using Fluorodeoxythymidine to Monitor Anti-EGFR Inhibitor Therapy in Squamous Cell Carcinoma Xenografts. Head & Neck, 30, 790-799.

[37]   Manning, H.C., Merchant, N.B., Foutch, A.C., Virostko, J.M., Wyatt, S.K., Shah, C., McKinley, E.T., Xie, J., Mutic, N.J., Washington, M.K., LaFleur, B., Tantawy, M.N., Peterson, T.E., Ansari, M.S., Baldwin, R.M., Rothenberg, M.L., Bornhop, D.J., Gore, J.C. and Coffey, R.J. (2008) Molecular Imaging of Therapeutic Response to Epidermal Growth Factor Receptor Blockade in Colorectal Cancer. Clinical Cancer Research, 14, 7413-7422.

[38]   Herrmann, K., Buck, A.K., Schuster, T., Abbrederis, K., Blümel, C., Santi, I., Rudelius, M., Wester, H.J., Peschel, C., Schwaiger, M., Dechow, T. and Keller, U. (2014) Week One FLT-PET Response Predicts Complete Remission to R-CHOP and Survival in DLBCL. Oncotarget, 5, 4050-4059.

[39]   Manufacture’s Instruction, Acris Antibodies.

[40]   Ma, D.Y. and Clark, E.A. (2009) The Role of CD40 and CD154/CD40L in Dendritic Cells. Seminars in Immunology, 21, 265-272.

[41]   van Kooten, C. and Banchereau, J. (2000) CD40-CD40 Ligand. Journal of Leukocyte Biology, 67, 2-17.

[42]   Advani, R., Forero-Torres, A., Furman, R.R., Rosenblatt, J.D., Younes, A., Ren, H., Harrop, K., Whiting, N. and Drachman, J.G. (2009) Phase I Study of the Humanized Anti-CD40 Monoclonal Antibody Dacetuzumab in Refractory or Recurrent Non-Hodgkin’s Lymphoma. Journal of Clinical Oncology, 27, 4371-4377.