[1] Ciorascu, F., et al. (1962) Some Problems of the Commissioning and the Adjusting of the Betatron from the Institute of Atomic Physics. St. Cerc. Fiz., 15, 11, 105.
[2] Scarlat, F. (1971) Adaptation of the 30 MeV IAP Betatron for Medical Therapy. The 5th International Betatron Symposium, Bucharest-Magurele, Romania, 18-23 October 1971.
[3] Birzu, I., Grigorescu, St. and Scarlat, F. (1973) Therapeutic and Dosimetric Aspects in the Treatment of Malignant Tumours with a 30 MeV Betatron. The International Conference on Photonuclear Reactions and Applications, Asilomar Livermore, 26-30 March 1973.
[4] Scarlat, F. (1992) A 40 MeV Medical Betatron. Rev. Roum. Phys.Tome, 37, 615-619.
[5] Baltateanu, N., et al. (1969) L’accelerateur lineaire a’electrons de 3 MeV. preprint IFA, AL-1, 3-16.
[6] Haltrich, S. and Scarlat, F. (1967) Parametrii betatronului IFA de 8 MeV. Raport intern IFA, MB-178, 10 Decembrie 1967.
[7] Haltrich, S., Ivanovici, M., Iliescu, C., Panaitescu, I., Mohor, I. and Scarlat, F. (1970) Ein 8 MeV Betatron Mit Verbesserten Magnetkreis. Kernenergie, Band 13, H.1, S.16-24.
[8] Baciu, G., Panaitescu, I., Mohor, I., Scarlat, F. and Andreescu, M. (1971) Romanian Industrial Betatron BETI for Non-destructive Testing. The 5th International Betatron Symposium, Bucharest-Magurele, 18-23 October 1971.
[9] Axinescu, S., et al. (1982) The 17-Orbit Microtron of the Institute of Atomic Physics. All Union Symposium on microtrons and Their Applications, Dubna, U.S.S.R.
[10] Minea, R., et al. (2004) Accelerators Use for Irradiation Offers Medicinal Herbs. Proc. of EPAC, Lucerne, 2004, 2371-2373.
[11] Martin, D., et al. (2006) Waste Treatment by Microwave and Electron Beam Irradiation. Proc. of the Environmental Physics Conference, Alexandria, 18-22 February 2006, 91-100.
[12] Scarlat, F., Scarisoreanu, A., Minea, R., Badita, E., Sima, E., Dumitrascu, M., Stancu, E. and Vancea, C. (2013) Secondary Standard Dosimetry Laboratory at INFLPR. Optoelectronics and Advanced Materials—Rapid Communications, Vol.7, 618-624.
[13] Zamfir, N.V. (2012) Extreme Light Infrastructure—Nuclear Physics ELI-NP. Experimental Programme Workshop at ELI-NP, Bucharest, 3-5 October 2012.
[14] Scarlat, F., Verga, N., Scarisoreanu, A., Badita, E., Dumitrascu, M., Stancu, E., Vancea, C. and Scarlat, Fl. (2013) Absorbed Dose Determination in Conventional and Laser-Driven Hadron Clinical Beams. Journal of Intense Pulsed Lasers and Applications in Advances Physics, 3, 5-25.
[15] Bulanov, S.V. and Khoroshkov, V.S. (2002) Feasibility of Using Laser Ion Accelerators in Proton Therapy. Plasma Physics Reports, 28, 453-456. http://dx.doi.org/10.1134/1.1478534
[16] Scarlat, F., Scarisoreanu, A., Verga, N., Scarlat, Fl. and Vancea, C. (2014) Evaluation of Physical Parameters for Laser-Driven Clinical Hadron Beams. Journal of Intense pulsed Lasers and Applications in Advances Physics, 4, 55-64.
[17] ICRU Report 21 (1974) Radiation Dosimetry: Electrons with Initial Energies between 1 and 50 MeV. Quantities and Units. International Commission on Radiation Units and Measurements, Washington D.C.
[18] IAEA TRS 398. Absorbed Dose Determination in External Beam Radiotherapy. An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water. Tehnical Report no 398.
[19] IAEA TRS 277. Absorbed Dose Determination in Photon and Electron Beams. An international Code of Practice. Tehnical Report of Series no. 277, Vienna, 1997.
[20] ICRU Report 59 (1998) Clinical Proton Dosimetry—Part I: Beam Production, Beam Delivery and Measurement of Absorbed Dose, International Commission on Radiation Units and Measurements, Bethesda, Maryland, USA.
[21] Hartmann, G.H., Jakel, O., Heeg, P., Karger, C.P. and Kriesβbach, A. (1999) Determination of Water Absorbed Dose in a Carbon Ion Beam Using Thimble Ionization Chambers. Phys. Med. Biol., 444.
[22] Vatnitsky, S., et al. (1999) Proton Dosimetry Intercomparation Based on the ICRU Report 59 Protocol. Rad and Oncol., 51, 273-279. http://dx.doi.org/10.1016/S0167-8140(99)00060-2
[23] IAEA TRS 381. The Use Plan Parallel Ionization Chambers in High Energy Electron and Photon Beams. An International Code of Practice for Dosimetry. Tehnical Report Series no. 381, Vienna, 1995.
[24] The Normalized (at Peak) Bragg Curves for Various Proton Incident Energies in Water Phantom: A Simulation with GEANT4 Monte Carlo Code, Abstract ID: 8159. http://www.aapm.org/meetings/amos2/pdf/34-8159-78594-298.pdf
[25] Karger, C.P., Jakel, O., Palmans, H. and Kanal, T. (2010) Dosimetry for Ion Beam Radiotherapy. Phys. Med. Biol., R193-R234. http://dx.doi.org/10.1088/0031-9155/55/21/R01
[26] ICRU Report 37 (1984) Stopping Powers for Electrons and Po-sitrons. International Commission on Radiation Units and Measurements, Bethesda, MD, USA.
[27] Geithner, O., Andreo, P., Sobolevsky, N., Hartman, G. and Jakel, O. (2006) Calculating of Stopping Power Ratios for Carbon Ions Dosimetry. Phys. Med. Biol., 51, 2279-2292. http://dx.doi.org/10.1088/0031-9155/51/9/012
[28] Berger, M.J. and Seltzer, S.M. (1983) Stopping Powers and Ranges of Electrons and Positrons, National Bureau of Standards NBSIR 82-2550-A, Washington D.C.
[29] ICRU Report 49 (1993) Stopping Powers and Ranges for Protons and Alpha Par-ticles, International Commission on Radiation Units and Measurements, Bethesda, Maryland, USA.
[30] IAEA TEDOC 1455. Implementation of the International Code of Practice on Dosimetry in Radiotherapy (TRS 398). Review and Testing. International Atomic Energy Agency, Vienna, 2005.
[31] IAEA TEDOC 1585. Measurements Uncertanity. A Practical Guide for Secondary Standard Dosimetry Laboratories. Vienna, 2008.