[1] Iglesias, E. and Alvarez, C.E. (1993) Apparent Availability of Nitrogen in Composted Municipal Refuse. Biology and Fertility of Soils, 16, 313-318. http://dx.doi.org/10.1007/BF00369312
[2] Rodrigo, S.C., White, R.E. and Weatherley, A.J. (2005) Biosolids Effectiveness to Yield Ryegrass Based on Their Nitrogen Content. Scientia Agricola, 62, 274-280.
http://dx.doi.org/10.1590/S0103-90162005000300011
[3] Giusquiani, P.L., Pagliai, M., Gigliotti, G., Businelli, D. and Benetti, A. (1995) Urban Waste Compost: Effects on Physical, Chemical, and Biochemical Soil Properties. Journal of Environmental Quality, 24, 175-182.
http://dx.doi.org/10.2134/jeq1995.00472425002400010024x
[4] Scherer, H.W., Metker, D.J. and Welp, G. (2011) Effect of Long-Term Organic Admendments on Chemical and Microbial Properties of Luvisol. Plant, Soil and Environment, 57, 513-518.
http://www.agriculturejournals.cz/publicFiles/50060.pdf
[5] Hoang, N.X. and Viet, L.H. (2011) Solid Waste Management in Mekong Delta. Journal of Vietnamese Environment, 1, 27-33.
[6] Ashgar, M.I., Zahir, A.A., Khalid, M. and Arshad, M. (2006) Response of Radish to Integrated Use of Nitrogen Fertilizer and Recycled Organic Waste. Pakistan Journal of Botany, 38, 691-700.
[7] Esawy, M., Nasser, A., Paul, R., Nouraya, A. and Lamyaa, A. (2009) Effects of Different Organic and Inorganic Fertilizers on Cucumber Yield and Some Soil Properties. World Journal of Agricultural Sciences, 5, 408-414.
[8] Wolf, D.C., Legg, J.O. and Boutton, T.W. (1994) Isotopic Methods for the Study of Soil Organic Matter Dynamics. In: Weaver, R.W., Angle, S., Bottomly, P., Bezdicek, D., Smith, S., Tabatabai, A. and Wollum, A., Eds., Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties, SSSA, Madison, 865-906.
[9] Hauck, R., Meisinger, J.J. and Mulvaney, C.S. (1994) Practical Considerations in the Use of Nitrogen Tracers in Agricultural and Environmental Research. In: Weaver, R.W., Angle, S., Bottomly, P., Bezdicek, D., Smith, S., Tabatabai, A. and Wollum, A., Eds., Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties, SSSA, Madison, 907-943.
[10] Murphy, D.V., Recous, S., Stockdale, E.A., Fillery, I.R.P., Jensen, L.S., Hatch, D.J. and Goulding, K.W.T. (2003) Gross Nitrogen Fluxes in Soil: Theory, Measurement and Application of 15N Pool Dilution Techniques. Advance in Agronomy, 79, 69-118. http://dx.doi.org/10.1016/S0065-2113(02)79002-0
[11] Binh, N.T., Quynh, H.T., Oshiro, S. and Shima, K. (2015) Evaluation of Sewage Sludge Compost Quality through Maturity Index and Biomass Yield of Italian Ryegrass (Lolium multiforum L.). Journal of Science, Technology and Development, Manuscript Submitted for Publication (Copy on File with Author).
[12] Doane, T.A. and Horwath, W.R. (2003) Spectrophotometric Determination of Nitrate with a Single Reagent. Analytical Letters, 36, 2713-2722. http://dx.doi.org/10.1081/AL-120024647
[13] Hauck, R.D. and Bremner, J.M. (1976) Use of Tracers for Soil and Fertilizer Nitrogen Research. Advances in Agronomy, 28, 219-266. http://dx.doi.org/10.1016/S0065-2113(08)60556-8
[14] Westerman, R.L. and Kurtz, L.T. (1974) Isotopic and Nonisotopic Estimation of Fertilizer Nitrogen Uptake by Sudangrass in Field Experiment. Soil Science Society of America Journal, 38, 107-109.
http://dx.doi.org/10.2136/sssaj1974.03615995003800010033x
[15] Onofri, A. and Pannacci, E. (2014) Spreadsheet Tools for Biometry Classes in Crop Science Programmes. Communications in Biometry and Crop Science, 9, 43-53.
[16] Hart, P.B.S., Rayner, J.H. and Jenkinson, D.S. (1986) Influence of Pool Substitution on the Interpretation of Fertilizer Experiments with 15N. Journal of Soil Science, 37, 389-403.
http://dx.doi.org/10.1111/j.1365-2389.1986.tb00372.x
[17] Choi, W.S., Jin, S.A., Lee, S.M., Ro, H.M. and Yoo, S.H. (2001) Corn Uptake and Microbial Immobilization of 15N- Labeled Urea-N in Soil as Affected by Composted Pig Manure. Plant and Soil, 235, 1-9.
http://dx.doi.org/10.1023/A:1011896912888
[18] Ozorez-Hampton, M.P. and Obreza, T.A. (2001) Evaluation of in Situ N Mineralization of Composted Organic Wastes Applied to Sandy Soil. Proceedings of the Florida State Horticultural Society, 114, 342-346.
[19] Hartz, T.K., Costa, F.J. and Schrader, W.L. (1996) Suitability of Composted Green Waste for Horticulture Uses. HortScience, 31, 961-964.
[20] Masakazu, A. and Nozawa, T. (2012) Microbial Biomass Nitrogen and Mineralization Immobilization Processes of Nitrogen in Soils Incubated with Various Organic Materials. Soil Science and Plant Nutrition, 39, 23-32.
[21] Hadas, A. and Portnoy, R. (1994) Nitrogen and Carbon Mineralization Rates of Composted Manures Incubated in Soil. Journal of Environmental Quality, 23, 1184-1189.
http://dx.doi.org/10.2134/jeq1994.00472425002300060008x
[22] Yevdokimov, I.V., Gattinger, A., Buegger, F., Schloter, M. and Munch, J.C. (2011) Changes in Structure and Activity of a Soil Microbial Community Caused by Inorganic Nitrogen Fertilization. Microbiology, 81, 743-749. http://dx.doi.org/10.1134/S0026261712060045
[23] Compton, J.E. and Boone, R. (2002) Soil Nitrogen Transformations and the Role of Light Fraction Organic Matter in Forest Soils. Soil Biology and Biochemistry, 34, 933-943.
http://dx.doi.org/10.1016/S0038-0717(02)00025-1
[24] Joergensen, R.G., Brookes, P.C. and Jenkinson, D.S. (1990) Survival of the Soil Microbial Biomass at Elevated Temperatures. Soil Biology Biochemistry, 22, 1129-1136.
http://dx.doi.org/10.1016/0038-0717(90)90039-3