Graphene  Vol.4 No.2 , April 2015
Graphene Thin Layers Formation on Monocrystalline Ni(111)/MgO(111) by Carbon Implantation and Annealing
The objectives of this study are the elaboration of graphene by 1) carbon implantation at moderate temperature (873 K) into a monodomain epitaxially-grown Ni(111) film deposited on a reusable MgO(111) substrate, followed by 2) carbon surface precipitation by thermal treatment. The growth of the nickel film by molecular beam epitaxy has been monitored by Reflection High Energy Electron Diffraction. The film morphology has been studied by Electron Back-Scattered Diffraction, Atomic Force Microscopy and Rutherford Backscattering Spectroscopy in the tunneling mode. In the optimized conditions corresponding to a germination step at 633 K followed by a step growth at 873 K and a post-annealing treatment at 1023 K monocrystalline Ni(111) //MgO(111) films are prepared, exhibiting monodomain swith high structural and orientation qualities. 13C implantation into these nickel films is subsequently achieved at 873 K with energy within 20 - 50 keV and a carbon dose equivalent to 4 monolayers of graphene (1.4 × 1016 at/cm2). Carbon diffuses mainly towards the surface, forming thin layers graphene. Compared to a Ni polycrystalline film the graphene fragments are larger and better facetted. The carbon amounts inside the nickel films at different steps, as well as the carbon amount at the surface, have been measured by Nuclear Reaction Analysis and X-ray Photoelectron Spectroscopy, respectively. The results show that, in addition to implanted 13C, some amounts of 12C is incorporated at different steps of the process and is involved in the formation of the graphene monolayers, as shown by 13C/12C Raman mappings. We finally discuss different mechanisms for carbon diffusion and surface segregation, considering the size and thickness distributions of the thin-layers graphene.

Cite this paper
Normand, F. , Benyahia, M. , Speisser, C. , Muller, D. , Aweke, F. , Gutierrez, G. , Arabski, J. and Morvan, G. (2015) Graphene Thin Layers Formation on Monocrystalline Ni(111)/MgO(111) by Carbon Implantation and Annealing. Graphene, 4, 21-37. doi: 10.4236/graphene.2015.42003.
[1]   Avouris, P. and Dimitrakopoulos, C. (2012) Graphene: Synthesis and Applications. Materials Today, 15, 86-97.

[2]   Fuhrer, M.S., Lau, C.N. and MacDonald, A.H. (2010) Graphene: Materially Better Carbon. Material Research Society Bulletin, 35, 289-295.

[3]   Castro Neto, A.H., Peres, N.M.R., Guinea, F., Novoselov, K.S. and Geim, A.K. (2009) The Electronic Properties of Graphene. Review of Modern Physics, 81, 109-162.

[4]   Jang, W.Y., Chen, Z., Bao, W.Z., Lau Z.N. and Dames, C. (2010) Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite. Nano Letters, 10, 3909-3913.

[5]   Lee, C.G., Wei, X.D., Kysar, J.W. and Home, J. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388.

[6]   Blake, P., Hill, E.W., Castro Neto, A.H., Novoselov, K.S., Jiang, D., Yang, R., Booth, T.J. and Geim, A.K. (2007) Making Graphene Visible. Applied Physics Letters, 91, Article ID: 063124.

[7]   Bolotin, K.I., Sikes, K.J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. and Stormer, H.L. (2008) Ultrahigh Electron Mobility in Suspended Graphene. Solid State Communications, 146, 351-355.

[8]   Gruneis, A., Kummer, K. and Vyalikh, D.V. (2009) Dynamics of Graphene Growth on a Metal Surface: A Time-De- pendent Photoemission Study. New Journal of Physics, 11, Article ID: 073050.

[9]   Mattevi, C., Kim, H.K. and Chhowalla, M. (2011) A Review of Chemical Vapour Deposition of Graphene on Copper. Journal of Materials Chemistry, 21, 3324-3334.

[10]   Han, G.H., Gunes, F., Bae, J.J., Kim, E.S., Chae, S.J., Shin, H.J., Choi, J.Y., Pribat, D. and Lee, Y.H. (2011) Influence of Copper Morphology in Forming Nucleation Seeds for Graphene Growth. Nano Letters, 11, 4144-4148.

[11]   Yu, Q.K., Jauregui, L.A., Tian, J., Wu, W., Colby, R., Liu, Z.H., Su, Z., Cao, H., Jalilian, R., Pandey, D., Wei, D.G., Chung, T.F., Peng, P., Guisinger, N.P., Stach, E.A., Bao, J., Pei, S.S.S. and Chen, Y.P. (2011) Control, and Characterization of Individual Grains and Grain Boundaries in Graphene Grown by Chemical Vapour Deposition. Nature Materials, 10, 443-449.

[12]   Iwasaki, T., Park, H.J., Konuma, M., Lee, D.S., Smet, J.H. and Starke, U. (2011) Long-Range Ordered Single-Crystal Graphene on High-Quality Heteroepitaxial Ni Thin Films Grown on MgO(111). Nano Letters, 11, 79-84.

[13]   Reddy, K.M., Gledhill, A.D., Chen, C.H., Drexler, J.M. and Padture, N.P. (2011) High Quality, Transferrable Graphene Grown on Single Crystal Cu(111) Thin Films on Basal-Plane Sapphire. Applied Physics Letters, 98, 113117/1-3.

[14]   Ogawa, Y., Hu, B., Orofeo, C.M., Tsuji, M., Mizuno, S., Ikeda, K.I., Hibino, H. and Ago, H. (2012) Domain Structure and Boundary in Single-Layer Graphene Grown on Cu(111) and Cu(100) Films. The Journal of Physical Chemistry Letters, 3, 219-226.

[15]   Hu, B.S., Ago, H., Ito, Y., Kawahara, K., Tsuji, M., Magome, E., Sumitani, K., Mizuta, N., Ikeda, K.I. and Mizuno, S. (2012) Epitaxial Growth of Large-Area Single-Layer Graphene over Cu(111)/Sapphire by Atmospheric Pressure CVD. Carbon, 50, 57-65.

[16]   Garaj, S., Hubbard, W. and Golovchenko, J.A. (2010) Graphene Synthesis by Ion Implantation. Applied Physics Letters, 97, 183103-183106.

[17]   Baraton, L., Maurice, J.L., Cojocaru, C.S., Pribat, D., He, Z.B., Lee, Y.H., Lee, C.S. and Gourgues-Lorenzon, A.F. (2011) Synthesis of Few-Layered Graphene by Ion Implantation of Carbon in Nickel Thin Films. Nanotechnology, 22, 085601-085606.

[18]   Mun, J.H., Lim, S.K. and Cho, B.J. (2012) Local Growth of Graphene by Ion Implantation of Carbon in a Nickel Thin Film Followed by Rapid Thermal Annealing. Journal of the Electrochemical Society, 159, G89-G92.

[19]   Zhang, R., Zhang, Z.D., Wang, Z.S., Wang, S.X., Wang, W., Fu, D.J. and Liu, J.R. (2012) Nonlinear Damage Effect in Graphene Synthesis by C-Cluster Ion Implantation. Applied Physics Letters, 101, 0119051-0119054.

[20]   Zhang, Z.D., Wang, Z.S., Zhang, R., Wu, X.Y., Fu, D.J. and Liu, J.R. (2013) Improvement of Graphene Quality Synt hesized by Cluster Ion Implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 307, 260-264.

[21]   Zhang, R., Wang, Z.S., Zhang, Z.D., Dai, Z.G., Wang, L.L., Li, H., Zhou, L., Shang, Y.X., He, J., Fu, D.J. and Liu, J.R. (2013) Direct Graphene Synthesis on SiO2/Si Substrates by Ion Implantation. Applied Physics Letters, 102, 193102/1-4.

[22]   Gutierrez, G., Muller, D., Antoni, F., Speisser, C., Aweke, F., Le Gall, Y., Lee, C.S., Cojocaru, C.S. and Le Normand, F. (2014) Multi-Layer Graphene Obtained by High Temperature Carbon Implantation into Nickel Films. Carbon, 66, 1-10.

[23]   Gutierrez, G., Le Normand, F., Aweke, F., Muller, D., Speisser, C. and Antoni, F. (2014) Mechanism of Thin Layers Graphite Formation by 13C Implantation and Annealing. Applied Sciences, 4, 180-194.

[24]   Zhang, Y., Gomez, L., Ishikawa, F.N., Madaria, A., Ryu, K.M., Wang, C., Badmaev, A. and Zhou, C.W. (2010) Comparison of Graphene Growth on Single-Crystalline and Polycrystalline Ni by Chemical Vapour Deposition. The Journal of Physical Chemistry Letters, 1, 3101-3107.

[25]   Sandstrom, P., Svedberg, E.B., Birch, J. and Sundgren, J.E. (1999) Structure and Surface Morphology of Epitaxial Ni Films Grown on MgO(111) Substrates: Growth of High Quality Single Domain Films. Journal of Crystal Growth, 197, 849-857.

[26]   Nix, F.C. and MacNair, F. (1941) Thermal Expansion of Pure Metals: Copper, Gold, Aluminium, Nickel and Iron. Physical Review, 60, 597-605.

[27]   Fiquet, G., Richet, P. and Montagnac, G. (1999) High-Temperature Thermal Expansion of Lime, Periclase, Corundum and Spinel. Physics and Chemistry of Minerals, 27, 103-111.

[28]   Bailey, A.C. and Yates, B.J. (1970) Anisotropic Thermal Expansion of Pyrolitic Graphite at Low Temperatures. Journal of Applied Physics, 41, 5088-5090.

[29]   Tsang, D.K.L., Marsden, B.J., Fok, S.L. and Hall, G. (2005) Graphite Thermal Expansion Relationship for Different Temperature Ranges. Carbon, 43, 2902-2906.

[30]   Stoquert, J.P., Pêcheux, F., Hervé, Y., Marchal, H., Stuck, R. and Siffert, P. (1998) VRBS: A Virtual RBS Simulation Tool for Ion Beam Analysis. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 136-138, 1152-1156.

[31]   Sandstrom, P., Svedberg, E.B., Birch, J. and Sundgren, J.E. (1999) Time-Resolved Measurements of the Formation of Single-Domain Epitaxial Ni Films on MgO(111) Substrates Using In-Situ RHEED Analysis. Surface Science, 437, L767-L772.

[32]   Huez, M., Quaglia, L. and Weber, G. (1972) Fonction d’Excitation de la Réaction 12C(d,p0)13C entre 400 et 1350 keV —Distributions angulaires. Nuclear Instruments and Methods., 105, 197-203.

[33]   Colaux, J.L., Thomé, T. and Terwagne, G. (2007) Cross Section Measurements of the Reactions Induced by Deuteron Particles on 13C. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 254, 25-29.

[34]   Tuinstra, F. and Koenig, J.L. (1970) Raman Spectrum of Graphite. The Journal of Chemical Physics, 53, 1126-1131.

[35]   Malard, L.M., Pimenta, M.A., Dresselhaus, G. and Dresselhaus, M.S. (2009) Raman Spectroscopy in Graphene. Physics Reports, 473, 51-87.

[36]   Cancado, L.G., Jorio, A., Ferreira, E.H., Stavale, F., Achete, C.A. and Capaz, R.B. (2011) Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Letters, 11, 3190-3196.

[37]   Ferrari, A.C. and Robertson, J. (2001) Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamond Like Carbon. Physical Review B, 64, 075414-075426.

[38]   Kalbac, M., Fahrat, H., Kong, J., Janda, P., Kavan, L. and Dresselhaus, M.S. (2011) Raman Spectroscopy and in Situ Raman Spectroelectrochemistry of Bilayer 12C/13C Graphene. Nano Letters, 11, 1957-1963.

[39]   Tanuma, S., Powell, C.J. and Penn, D.R. (2004) Calculations of Electron Inelastic Mean Free Paths. V. Data for 14 Organic Compounds over the 50 - 2000 eV Range. Surface and Interface Analysis, 21, 165-176.

[40]   Shelton, J.C., Patil, H.R. and Blakely, J.M. (1974) Equilibrium Segregation of Carbon to a Nickel (111) Surface: A Surface Phase Transition. Surface Science, 43, 493-520.

[41]   Eizenberg, M. and Blakely, J.M. (1979) Carbon Monolayer Phase Condensation on Ni(111). Surface Science, 82, 228-236.

[42]   Aweke, F., Hulik, J., Le Normand, F., Antoni, F., Speisser, C. and Morvan, G. (2015) Growth of Monocrystalline Cu(111) Films on MgO (111) by Pulsed Laser Deposition. Applied Surface Science, 336, 309-313.