[1] Wester, P.W. and Canton, J.H. (1991) The Usefulness of Histopathology in Aquatic Toxicity Studies. Comparative Biochemistry and Physiology, 100, 115-117.
[2] Thophona, S., Kruatrachuea, M., Upathama, E.S., Pokethitiyooka, P., Sahaphongb, S. and Jaritkhuanc, S. (2003) Histopathological Alterations of White Seabass, Lates calcarifer in Acute and Subchronic Cadmium Exposure. Environmental Pollution, 121, 307-320.
http://dx.doi.org/10.1016/S0269-7491(02)00270-1
[3] Scharfettner-Kochanek, K., Wlaschek, M., Brenneisen, P., Schauen, M., Blaudschun, R. and Wenk, J. (1997) UV-Induced Reactive Oxygen Species in Photocarcinogenesis and Photoageing. Journal of Biological Chemistry, 378, 1247-1257.
[4] Gernhofer, M., Pawet, M., Schramm, M., Müller, E. and Triebskorn, R. (2001) Ultrastructural Biomarkers as Tools to Characterize the Health Status of Fish in Contaminated Streams. Journal of Aquatic Ecosystem Stress and Recovery, 8, 241-226.
http://dx.doi.org/10.1023/A:1012958804442
[5] Akiyoshi, H. and Inoue, A.M. (2012) Comparative Histological Study of Hepatic Architecture in the Three Orders Amphibian Liver. Comparative Hepatology, 11, 1-8.
http://dx.doi.org/10.1186/1476-5926-11-2
[6] Hoffman, J. and Katz, U. (1998) Glyconeogenesis and Urea Synthesis in the Toad Bufo viridis during Acclimation to Water Restriction. Physiological Zoology, 71, 85-92.
http://dx.doi.org/10.1086/515886
[7] Osman, A.H., Pfeiffer, C.J. and Asashima, M. (1991) Liver Uhrastructure and a New Cell Type in the Japanese Newt, Cynops pyrrhogaster. European Journal of Morphology, 29, 255-270.
[8] Goldblatt, P.J., Hampton, J.A., DiDio, L.N., Skeel, K.A. and Klaunig, J.E. (1987) Morphologic and Histochemical Analysis of the Newt (Notophthalmus viridescens) Liver. The Anatomical Record, 217, 328-338.
http://dx.doi.org/10.1002/ar.1092170403
[9] Rappaport, A.M. (1967) Diseases of the Liver. In: Schiff, L., Ed., Anatomic Considerations, 2nd Edition, Lippincott Company—Asian Edition Hakko Co. Ltd., Philadelphia, 1-46.
[10] Menon, J. and Wahrman, M. (2001) Ultrastructure Observations on Effect of Different Concentrations of Calicum and Thyroxine in Vitro and Larval Epidermal Cells of Rana catesbelana Tadpoles. In Vitro Cellular & Developmental Biology—Animal, 37, 283-292.
[11] Lindeman, V.F. (1929) Integumentary Pigmentation in the Frog, Rana pipens, during Metamorphosis, with Especial Reference to Tail-Skin Histolysis. Physiological Zoology, 2, 255-268.
[12] Clausen, H.J. (1930) Rate of Histolysis of Anuran Tail Skin and Muscle during Metamorphosis. Biological Bulletin, 59, 199-210.
http://dx.doi.org/10.2307/1536989
[13] Kinoshita, T., Sasaki, F. and Watanabe, K. (1986) Regional Specificity of Anuran Larval Skin during Metamorphosis: Dermal Specificity in Development and Histolysis of Recombined Skin Grafts. Cell and Tissue Research, 245, 297-304.
http://dx.doi.org/10.1007/BF00213935
[14] Pan, K.M., Baldwin, M., Nguyen, J., Gasset, M., Serban, A., Groth, D., Mehlhorn, I., Huang, Z., Fletterick, R.J. and Cohen, F.E. (1993) Conversion of α-Helices into β-Sheets Features in the Formation of the Scrapie Prion Proteins. Proceedings of the National Academy of Sciences of the United States of America, 90, 10962-10966.
http://dx.doi.org/10.1073/pnas.90.23.10962
[15] Schreiber, A.M. and Brown, D.D. (2003) Tadpole Skin Dies Autonomously in Response to Thyroid Hormone at Metamorphosis. Proceedings of the National Academy of Sciences of the United States of America, 100, 1769-1774.
http://dx.doi.org/10.1073/pnas.252774999
[16] Sedra, S.N. and Micheal, M.I. (1961) Normal Table of the Egyptian Toad, Bufo regularis Reuss, with an Addendum on the Standardization of the Stages Considered in Previous Publications. Ceskoslovenská Morfologie, 9, 333-351.
[17] Sayed, A.H., Elballouz, A.I. and Wassif, E.T. (2014) Molecular Characterization on the Early Developmental Stages of the Egyptian Toad Bufo regularis Reuss. Open Journal of Genetics, 4, 343-354.
http://dx.doi.org/10.4236/ojgen.2014.45031
[18] Humason, G.L. (1979) Animal Tissue Techniques. 4th Edition, W.H. Freeman, San Francisco.
[19] Gupta, P.D. (1983) Ultrastructural Study on Semithin Section. Science Tools, 30, 6-7.
[20] Tanaka, M. and Wanless, I.R. (1998) Pathology of the Liver in Budd-Chiari Syndrome: Portal Vein Thrombosis and the Histogenesis of Veno-Centric Cirrhosis, Veno-Portal Cirrhosis, and Large Regenerative Nodules. Hepatology, 27, 488-496.
http://dx.doi.org/10.1002/hep.510270224
[21] Glucksman, A. (1940) Development and Differentiation of the Tadpole Eye. British Journal of Ophthalmology, 24, 153-178.
http://dx.doi.org/10.1136/bjo.24.4.153
[22] Saad, A.H., Aziz, A.A., Yahie, A. and El-Ghareeb, A. (2009) Programmed Cell Death in the Liver of Different Species of Anuran Amphibians during Metamorphosis. Australian Journal of Basic and Applied Sciences, 3, 4644-4655.
[23] Hensey, C. and Gautier, J. (1998) Programmed Cell Death during Xenopus Development: A Spatio-Temporal Analysis. Developmental Biology, 203, 36-48.
http://dx.doi.org/10.1006/dbio.1998.9028
[24] Glucksmann, A. (1951) Cell Death in Normal Vertebrate Ontogeny. Biological Reviews, 26, 59-86.
http://dx.doi.org/10.1111/j.1469-185X.1951.tb00774.x
[25] Bellairs, R. (1961) Cell Death in the Chick Embryo as Studied by Electron Microscopy. Journal of Anatomy, 95, 54-60.
[26] Farbman, A.I. (1968) Electron Microscope Study of Palate Fusion in Mouse Embryos. Developmental Biology, 18, 93-116.
http://dx.doi.org/10.1016/0012-1606(68)90038-9
[27] Manasek, F.J. (1969) Myocardial Cell Death in the Embryonic Chick Ventricle. Journal of Embryology and Experimental Morphology, 21, 271-284.
[28] Webster, D.A. and Gross, J. (1970) Studies on Possible Mechanisms of Programmed Cell Death in the Chick Embryo. Developmental Biology, 22, 157-184.
http://dx.doi.org/10.1016/0012-1606(70)90012-6
[29] Mottet, N.K. and Hammar, S.P. (1972) Ribosome Crystals in Necrotizing Cells from the Posterior Necrotic Zone of the Developing Chick Limb. Journal of Cell Science, 11, 403-414.
[30] Kerr, J.F.R. (1973) Some Lysosome Functions in Liver Cells Reacting to Sublethal Injury. In: Dingle, J.T., Ed., Lysosomes in Biology and Pathology, Vol. 3, North-Holland, Amsterdam, 365-394.
[31] Tsuchiya, Y., Murai, S. and Yamashita, S. (2005) Apoptosis-Inhibiting Activities of BIR Family Proteins in Xenopus Egg Extracts. FEBS Journal, 272, 2237-2250.
http://dx.doi.org/10.1111/j.1742-4658.2005.04648.x
[32] Hasebe, T., Kajita, M., Fujimoto, K., Yaoita, Y. and Ishizuya-Oka, A. (2007) Expression Profiles of the Duplicated Matrix Metallo-Proteinase-9 Genes Suggest Their Different Roles in Apoptosis of Larval Intestinal Epithelial Cells during Xenopus laevis Metamorphosis. Developmental Dynamics, 236, 2338-2345.
http://dx.doi.org/10.1002/dvdy.21252
[33] Saelim, N., Holstein, D., Chocron, E.S., Camacho, P. and Lechleiter, J.D. (2007) Inhibition of Apoptotic Potency by Ligand Stimulated Thyroid Hormone Receptors Located in Mitochondria. Apoptosis, 12, 1781-1794.
http://dx.doi.org/10.1007/s10495-007-0109-1
[34] Estabel, J., Mercer, A., Konig, N. and Exbrayat, J. (2003) Programmed Cell Death in Xenopus laevis Spinal Cord, Tail and Other Tissues, Prior to, and during, Metamorphosis. Life Sciences, 73, 3297-3306.
http://dx.doi.org/10.1016/j.lfs.2003.06.015
[35] Purrello, M.N., Scalia, M., Corsaro, C., Di Pietro, C., Piro, S. and Sichel, G. (2001) Melanosynthesis, Differentiation, and Apoptosis in Kupffer Cells from Rana esculenta. Pigment Cell Research, 14, 126-131.
http://dx.doi.org/10.1034/j.1600-0749.2001.140208.x
[36] Frangioni, G., Atzori, A., Balzi, M., Fuzzi, G., Ghinassi, A., Pescosolido, N., Bianchi, S. and Borgioli, G. (2006) Thyroid and Hypoxic Stress in the Newt Triturus carnifex. Journal of Experimental Zoology Part A, 305, 225-232.
http://dx.doi.org/10.1002/jez.a.268
[37] Frangioni, G., Santoni, M., Bianchi, S., Franchi, M., Fuzzi, G., Marcaccini, S., Varlani, C. and Borgioli, G. (2005) Function of Hepatic Melanogenesis in the Newt Triturus carnifex. Journal of Experimental Zoology Part A, 303, 123- 131.
[38] Zorn, A.M. and Mason, J. (2001) Gene Expression in the Embryonic Xenopus Liver. Mechanisms of Development, 103, 153-157.
http://dx.doi.org/10.1016/S0925-4773(01)00341-0
[39] Szalewicz, A., Strzelczyk, B., Sopel, M. and Kubicz, A. (2003) The 35 kDa Acid Metallophosphatase of the Frog Rana esculenta Liver: Studies on Its Cellular Localization and Protein Phosphatase Activity. Acta Biochimica Polonica, 50, 555-566.
[40] Crawshaw, G.J. and Weinkle, T.K. (2000) Clinical and Pathological Aspects of the Amphibian Liver. Seminars in Avian and Exotic Pet Medicine, 9, 165-173.
http://dx.doi.org/10.1053/ax.2000.7133
[41] Corsaro, C., Scalia, M., Blanco, A.R., Aiello, I. and Sichel, G. (1995) Melanins in Physiological Conditions Protect against Lipoperoxidation. A Study on Albino and Pigmented Xenopus. Pigment Cell Research, 8, 279-282.
http://dx.doi.org/10.1111/j.1600-0749.1995.tb00675.x
[42] Sichel, G., Scalia, M., Mondio, F. and Corsaro, C. (1997) The Amphibian Kupffer Cells Build and Demolish Melanosomes: An Ultrastructural Point of View. Pigment Cell Research, 10, 271-287.
http://dx.doi.org/10.1111/j.1600-0749.1997.tb00687.x
[43] Zapata, A.G. and Cooper, E.L. (1990) The Immune System: Comparative Histophysiology. John Wiley and Sons, Chichester.
[44] Couillard, C.M. and Hodson, P.V. (1996) Pigmented Macrophage Aggregates: A Toxic Response in Fish Exposed to Bleached-Kraft Mill Effluent? Environmental Toxicology and Chemistry, 15, 1844-1854.
http://dx.doi.org/10.1002/etc.5620151027
[45] Loumbourdis, N.S. and Vogiatzis, A.K. (2002) Impact of Cadmium on Liver Pigmentary System of the Frog Rana ridibunda. Ecotoxicology and Environmental Safety, 53, 52-58.
http://dx.doi.org/10.1006/eesa.2002.2153
[46] Fenoglio, C., Boncompagni, E., Fasola, M., Gandini, C., Comizzoli, S., Milanesi, G. and Barni, S. (2005) Effects of Environmental Pollution on the Liver Parenchymal Cells and Kupffer-Melanomacrophagic Cells of the Frog Rana esculenta. Ecotoxicology and Environmental Safety, 60, 259-268.
http://dx.doi.org/10.1016/j.ecoenv.2004.06.006
[47] Yoshizato, K. (1992) Death and Transformation of Larval Ceils during Metamorphosis of Anura. Development, Growth & Differentiation, 34, 607-612.
[48] Izutsu, Y., Kaiho, M. and Yoshizato, K. (1993) Differential Distribution of Epidermal Basal Cells in the Anuran Larval Skin Correlates with the Skin’s Regionspecific Fate at Metamorphosis. Journal of Experimental Zoology, 267, 605-615.
http://dx.doi.org/10.1002/jez.1402670608
[49] Shimizu-Nishikawa, K. and Miller, L. (1991) Calcium Regulation of Epidermal Cell Differentiation in the Frog Xenopus laevis. Journal of Experimental Zoology, 260, 165-169.
http://dx.doi.org/10.1002/jez.1402600205
[50] Fox, H. (1984) Amphibia Morphogenesis. Humana Press, Clifton, New Jersey.
http://dx.doi.org/10.1007/978-1-4612-5302-0
[51] Dodd, M.H.I. and Dodd, J.M. (1976) The biology of metamorphosis. In: Lofts, B., Ed., Physiology of the Amphibia, Vol. 3, Academic Press, New York.
[52] Kerr, J.F.R., Harmon, B. and Searle, J. (1974) An Electron-Microscope Study of Cell Deletion in the Anuran Tadpole Tail during Spontaneous Metamorphosis with Special Reference to Apoptosis of Striated Muscle Fibers. Journal of Cell Science, 14, 571-585.
[53] Robinson, D.H. and Heintzelman, M.B. (1987) Morphology of Ventral Epidermis of Rana catesbeiana during Metamorphosis. Anatomical Record, 217, 305-317.
http://dx.doi.org/10.1002/ar.1092170310
[54] Izutsu, Y., Yoshizato, K. and Tochinai, S. (1996) Adult-Type Splenocytes of Xenopus Induce Apoptosis of Histocompatible Larval Tail Cells in Vitro. Differentiation, 60, 277-286. http://dx.doi.org/10.1046/j.1432-0436.1996.6050277.x
[55] Kinoshita, T., Medof, M.E. and Nussenzweig, V. (1986) Endogenous Association of Decay-Accelerating Factor DAF with C4b and C3b on Cell Membranes. Journal of Immunology, 136, 3390-3395.
[56] Toledo, R.C. and Jared, C. (1995) Cutaneous Granular Glands and Amphibian Venoms. Comparative Biochemistry and Physiology Part A, 111, 1-29.
http://dx.doi.org/10.1016/0300-9629(95)98515-I
[57] Fujikura, K., Kurabuchi, S., Tabuchi, M. and Inoue, S. (1988) Morphology and Distribution of the Skin Glands in Xenopus laevis and Their Response to Experimental Stimulations. Zoological Science, 5, 415-430.
[58] Bovbjerg, A.M. (1963) Development of the Glands of the Dermal Plicae in Rana pipiens. Journal of Morphology, 113, 231-243.
http://dx.doi.org/10.1002/jmor.1051130209
[59] Vanable, J.W. (1964) Granular Gland Development during Xenopus laevis Metamorphosis. Developmental Biology, 10, 331-357.
http://dx.doi.org/10.1016/0012-1606(64)90049-1
[60] McGarry, M.P. and Vanable Jr., J.W. (1969) The Role of Thyroxine in the Formation of Gland Rudiments in the Skin of Xenopus laevis. Developmental Biology, 20, 426-434.
http://dx.doi.org/10.1016/0012-1606(69)90024-4
[61] Delfino, G. (1977) Il differenziamento delle ghiandole granulose cutanee in larve di Bombina variegata pachypus (Bonaparte) (Anfibio, Anuro, Discoglosside). Ricerca al microscopio ottico e al microscopio elettronico. Archivio Italiano di Anatomia e di Embriologia, 82, 337-363.
[62] Verma, K. (1965) Regional Differences in Skin Gland Differentiation in Rana pipiens. Journal of Morphology, 117, 73-85.
http://dx.doi.org/10.1002/jmor.1051170105
[63] Delfino, G., Brizzi, R. and Calloni, C. (1990) A Morphofunctional Characterization of the Serous Cutaneous Glands in Bombina orientalis (Anura: Discoglossidae). Zoologischer Anzeiger, 225, 295-310.
[64] Delfino, G. (1991) Ultrastructural Aspects of Venom Secretion in Anuran Cutaneous Glands. In: Tu, A.T., Ed., Handbook of Natural Toxins, Vol. 5, Marcel Dekker Inc., New York, 777-802.