ANP  Vol.4 No.2 , May 2015
A New and Original Method to Produce Ca(OH)2 Nanoparticles by Using an Anion Exchange Resin
ABSTRACT
Ca(OH)2 nanoparticles in hydro-alcoholic dispersion (nanolime) were successfully employed in Cultural Heritage conservation, thanks to the ability to overcome the limiting aspects of traditional lime treatments. Nanolime were currently produced by chemical precipitation process, at high temperature, with long times of synthesis, and after several purification steps to remove undesired secondary phases. In this paper, an innovative, simple and original method for nanolime production was described. The method was based on an ion exchange process between an anionic resin and a calcium chloride aqueous solution, operating at room temperature. A pure Ca(OH)2 nanoparticles suspension can be rapidly obtained after separating the resin from suspension, and any purification step was necessary. The exhausted resins can be regenerated and reused for a cyclic nanolime production. Structural and morphological features of the produced nanolime were preliminarily characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Moreover, XRD measurements allowed estimating nanoparticles reactivity by following their carbonatation process in air, in relation to different water/alcohol ratios and medium or high relative humidity conditions. The produced Ca(OH)2 nanoparticles appeared hexagonally plated, with dimension less than 100 nm and, compared with those obtained by typical wet precipitation method, they proved to be more reactive.

Cite this paper
Taglieri, G. , Daniele, V. , Del Re, G. and Volpe, R. (2015) A New and Original Method to Produce Ca(OH)2 Nanoparticles by Using an Anion Exchange Resin. Advances in Nanoparticles, 4, 17-24. doi: 10.4236/anp.2015.42003.
References
[1]   Shih, S.M., Ho, Y.S., Song, Y.S. and Lin, J.P. (1999) Kinetics of Ca(OH)2 with CO2 at Low Temperature. Industrial & Engineering Chemistry Research, 38, 1316-1322.
http://dx.doi.org/10.1021/ie980508z

[2]   Van Balen, K. (2005) Carbonatation Reaction of Lime, Kinetics at Ambient Temperature. Cement and Concrete Research, 35, 647-657.
http://dx.doi.org/10.1016/j.cemconres.2004.06.020

[3]   Cizer, O., Van Balen, K., Van Gemert, D. and Elsen, J. (2006) Carbonatation Reaction of Lime Hydrate and Hydrated Binders at 20°C. First International Conference on Accelerated Carbonation for Environmental and Materials Engineering, The Royal Society, London, 12-14 June 2006.

[4]   Hansen, E., Doehne, E., Fidler, J., Larson, J., Martin, B., Matteini, M., et al. (2003) A Review of Selected Inorganic Consolidants and Protective Treatments for Porous Calcareous Materials. Reviews in Conservation, 4, 13-25.
http://dx.doi.org/10.1179/sic.2003.48.Supplement-1.13

[5]   Arcolao, C. (1996) Trattamento all’acqua di calce. In: Tecniche di restauro architettonico, tomo II, P.B. Torsello, UTET, Torino, 698-699.

[6]   Vinardi, M.G., Cully, M.H. and Brunetto, A. (2003) La reversibilità nel restauro. Riflessioni, esperienze, percorsi di ricerca. In: XI National Congress Scienza e Beni Culturali: “La Pulitura delle Superfici dell’Architettura”, Bressanone, 1-4 Luglio, XIX, 399-405.

[7]   Sten, P. (1981) Lime Water Consolidation. ICCROM, 53-61.

[8]   Dei, L. and Salvadori, B. (2006) Nanotechnology in Cultural Heritage Conservation: Nanometric Slaked Lime Saves Architectonic and Artistic Surfaces from Decay. Journal of Cultural Heritage, 7, 110-115.
http://dx.doi.org/10.1016/j.culher.2006.02.001

[9]   Slízková, Z., et al. (2010) Consolidation of Porous limestone with Suspensions of Calcium Hydroxide Nano-Particles in Alcohols. In: Litomysl, Eds., Stonecore—“Recent Progress in the Consolidation of Calcareous Materials”, Czech Republic, 21-22 April 2010.

[10]   Daniele, V. and Taglieri, G. (2010) Nanolime Suspensions Applied on Natural Lithotypes: The Influence of Concentration and Residual Water Content on Carbonatation Process and on Treatment Effectiveness. Journal of Cultural Heritage, 11, 102-106.
http://dx.doi.org/10.1016/j.culher.2009.04.001

[11]   Drdácky, M., Slízková, Z. and Ziegenbalg, G. (2009) Α Nano Approach to Consolidation of Degraded Historic Lime Mortars. Journal of Nano Research, 8, 13-22.
http://dx.doi.org/10.4028/www.scientific.net/JNanoR.8.13

[12]   López-Arce, P., Gomez-Villalba, L.S., Pinho, L., Fernández-Valle, M.E., álvarez de Buergo, M. and Fort, R. (2010) Influence of Porosity and Relative Humidity on Consolidation of Dolostone with Calcium Hydroxide Nanoparticles: Effectiveness Assessment with Non-Destructive Techniques Materials Characterization, 61, 168-184.
http://dx.doi.org/10.1016/j.matchar.2009.11.007

[13]   Pianski, J., Brümmer, K. and Ziegenbalg, G. (2010) Nano-Particles for Stone Conservation-State of the Art, Characteristics and Recent Developments. In: Stonecore—“Recent Progress in the Consolidation of Calcareous Materials”, Litomysl, Czech Republic, 21-22 Aprile 2010.

[14]   Navarro, C.R., Suzuki, A. and Ruiz-Agudo, E. (2013) Alcohol Dispersions of Calcium Hydroxide Nanoparticles for Stone Conservation. Langmuir, 29, 11457-11470.
http://dx.doi.org/10.1021/la4017728

[15]   Baglioni, P. and Giorgi, R. (2006) Soft and Hard Nanomaterials for Restoration and Conservation of Cultural Heritage. Soft Matter, 2, 293-303. http://dx.doi.org/10.1039/b516442g

[16]   Daniele, V., Taglieri, G. and Quaresima, R. (2008) The Nanolimes in Cultural Heritage Conservation: Characterisation and Analysis of the Carbonatation Process. Journal of Cultural Heritage, 9, 294-301.
http://dx.doi.org/10.1016/j.culher.2007.10.007

[17]   Taglieri, G., Daniele, V., Quaresima, R. and Volpe, R. (2009) Influence of the Nanolime Suspension Concentration on the Effectiveness of Stone Conservative Treatments. In: Acierno, D., Caputo, D., Cioffi, R. and D’Amore, A., Eds., Special Topics on Materials Science and Technology: The Italian Panorama, Brill Publisher, Leiden, 359-365.

[18]   Ambrosi, M., Dei, L., Giorgi, R., Neto, C. and Baglioni, P. (2001) Colloidal Particles of Ca(OH)2: Properties and Applications to Restoration of Frescoes. Langmuir, 17, 4251-4255. http://dx.doi.org/10.1021/la010269b

[19]   Daniele, V. and Taglieri, G. (2012) Synthesis of Ca(OH)2 Nanoparticles with the Addition of Triton X-100. Protective Treatments on Natural Stones: Preliminary Results. Journal of Cultural Heritage, 13, 40-46.
http://dx.doi.org/10.1016/j.culher.2011.05.007

[20]   Salvadori, B. and Dei, L. (2001) Synthesis of Ca(OH)2 Nanoparticles from Diols. Langmuir, 17, 2371-2374.
http://dx.doi.org/10.1021/la0015967

[21]   Roy, A. and Bhattacharya, J. (2010) Synthesis of Ca(OH)2 Nanoparticles by Wet Chemical Method. Micro & Nano Letters, 5, 131-134.
http://dx.doi.org/10.1049/mnl.2010.0020

[22]   Perry, R.H. and Green, D.W. (1998) Perry’s Chemical Engineers’ Handbook. McGraw Hill, New York, 2-122.

[23]   Volpe, R., Taglieri, G., Daniele, V. and Del Re, G. (2014) A Process for the Synthesis of Ca(OH)2 Nanoparticles by Means of Ionic Exchange Resin. Priority RM2011A000370, PCT/IB2013/056195.

[24]   Giorgi, R., Ambrosi, M., Toccafondi, N. and Baglioni, P. (2010) Nanoparticles for Cultural Heritage Conservation: Calcium and Barium Hydroxide Nanoparticles for Wall Painting Consolidation. Chemistry—A European Journal, 16, 9374-9382.
http://dx.doi.org/10.1002/chem.201001443

[25]   UNI EN 1008:2003 (2003) Acqua d’impasto per il calcestruzzo-Specifiche di campionamento, di prova e di valutazione dell’idoneità dell’acqua, incluse le acque di recupero dei processi dell’industria del calcestruzzo, come acqua d’impasto del calcestruzzo.

[26]   Lopez-Arce, P., Gomez-Villalba, L.S., Martinez-Ramirez, S., Alvarez de Buergo, M. and Fort, R. (2011) Influence of Relative Humidity on the Carbonation of Calcium Hydroxide Nanoparticles and the Formation of Calcium Carbonate Polymorphs. Powder Technology, 205, 263-269. http://dx.doi.org/10.1016/j.powtec.2010.09.026

[27]   Beruto, D.T. and Botter, R. (2000) Liquid-Like H2O Adsorption Layers to Catalyze the Ca(OH)2/CO2 Solid-Gas Reaction and to Form a Nonprotective Solid Product Layer at 20°C. Journal of the European Ceramic Society, 20, 497-503.
http://dx.doi.org/10.1016/S0955-2219(99)00185-5

[28]   Taglieri, G., Mondelli, C., Daniele, V., Pusceddu, E. and Trapananti, A. (2013) Synthesis and X-Ray Diffraction Analyses of Calcium Hydroxide Nanoparticles in Aqueous Suspension. Advances in Materials Physics and Chemistry, 3, 108-112.
http://dx.doi.org/10.4236/ampc.2013.31A013

 
 
Top