ABC  Vol.5 No.2 , April 2015
The Unexpected Existence of Coding and Non-Coding Fragments along the Eukaryotic Gene
Author(s) Pietro Volpe1,2*
ABSTRACT
The pathways leading to synthesis and post-synthetic modification of DNA employed methionine as donor of atoms: the carbon that came from its –CH3 served for DNA replication and repair either in bacteria or humans; its entire –CH3 served instead for building N6-methyladenine and 5-methylcytosine on bacterial DNA and 5-methylcytosine alone on human DNA. In humans, although a slight extra-S asymmetric methylation appeared de novo yielding on parental DNA 5’-m5CpC-3’/ 3’-GpG-5’, 5’-m5CpT-3’/3’-GpA-5’ and 5’-m5CpA-3’/3’-GpT-5’ monomethylated dinucleotide pairs, a heavy symmetric methylation involved in S semiconservatively newly made DNA to guarantee genetic maintenance of –CH3 in 5’-m5CpG-3’/3’-Gpm5C-5’ dimethylated dinucleotide pairs. In this framework, an inverse correlation was found between bulk genomic DNA methylation occurring in S and bulk polyA-containing pre-mRNA transcription taking place in G1 and G2. Thus, probes of 1 × 106 Daltons (constructed using sheared by sonication newly made methylated DNA filaments) revealed a modular organization in genes: after the hypermethylated promoter, they exhibited an alternation of unmethylated coding and methylated uncoding sequences. This encouraged the search for a language that genes regulated by methylation should have in common. An initial deciphering of restriction minimaps with hypomethylatable exons vs. hypermethylatable promoters and introns was improved when the bisulfite technique allowed a direct sequencing of m5C. In lymphocytes, where the transglutaminase gene is inactive, its promoter exhibited two fully methylated CpG-rich domains at 5’ and one fully unmethylated CpG-rich domain at 3’, including the site +1 and a 5’-UTR. At variance, in HUVEC cells, where the transglutaminase gene is active, in the first CpG-rich domain of promoter few doublets lost their –CH3. Such an inverse correlation suggested new hypotheses especially in connection with repair-modification: UV radiation would cause demethylation in given loci of a promoter by chance, whilst even a partial demethylation in this promoter would be able to resume a previously silent pre-mRNA transcription.

Cite this paper
Volpe, P. (2015) The Unexpected Existence of Coding and Non-Coding Fragments along the Eukaryotic Gene. Advances in Biological Chemistry, 5, 98-125. doi: 10.4236/abc.2015.52009.
References
[1]   Scarano, E., Iaccarino, M., Grippo, P. and Winckelmans, D. (1965) On Methylation of DNA during Development of the Sea Urchin Embryo. Journal of Molecular Biology, 14, 603-607.
http://dx.doi.org/10.1016/S0022-2836(65)80211-X

[2]   Vanyushin, B.F., Belozersky, A.N., Kokurina, N.A. and Kadirova, D.X. (1968) 5-Methylcytosine and 6-Methylaminopurine Inbacterial DNA. Nature, 218, 1066-1067.
http://dx.doi.org/10.1038/2181066a0

[3]   Lark, C. (1968) Studies on the in Vivo Methylation of DNA in Escherichia coli 15T. Journal of Molecular Biology, 31, 389-399.
http://dx.doi.org/10.1016/0022-2836(68)90416-6

[4]   Arber, W. (1965) Host Specificity of DNA Produced by Escherichia coli. V. The Role of Methionine in the Production of Host Specificity. Journal of Molecular Biology, 11, 247-256.
http://dx.doi.org/10.1016/S0022-2836(65)80055-9

[5]   Arber, W. and Linn, S. (1969) DNA Modification and Restriction. Annual Review of Biochemistry, 38, 467-500.
http://dx.doi.org/10.1146/annurev.bi.38.070169.002343

[6]   Arber, W. (1974) DNA Modification and Restriction. Progress in Nucleic Acids Research and Molecular Biology, 14, 1-37.
http://dx.doi.org/10.1016/S0079-6603(08)60204-4

[7]   Hattman, S., Brooks, J.E. and Masurekar, M. (1978) Sequence Specificity of the PI Modification Methylase (M?Eco P1) and DNA Methylase (M?Eco dam) Controlled by Escherichia coli dam Gene. Journal of Molecular Biology, 126, 367-380.
http://dx.doi.org/10.1016/0022-2836(78)90046-3

[8]   Messer, W. and Noyer-Weidnetr, M. (1988) Timing and Targeting: The Biological Functions of dam Methylation in E. coli. Cell, 54, 735-737.
http://dx.doi.org/10.1016/S0092-8674(88)90911-7

[9]   Palmer, B.R. and Marinus, M.G. (1994) The dam and dcm Strains of Escherichia coli. Gene, 143, 1-12.
http://dx.doi.org/10.1016/0378-1119(94)90597-5

[10]   Marinus, M.G. and Morris, N.R. (1974) Biological Function for 6-Methyladenine Residues in the DNA of Escherichia coli K12. Journal of Molecular Biology, 85, 309-322.
http://dx.doi.org/10.1016/0022-2836(74)90366-0

[11]   Raleigh, E.A. and Wilson, G. (1986) Escherichia coli K-12 Restricts DNA-Containing 5-Methylcytosine. Proceedings of the National Academy of Sciences of the United States of America, 83, 9070-9074.
http://dx.doi.org/10.1073/pnas.83.23.9070

[12]   Heitman, J. and Model, P. (1987) Site-Specific Methylases Induce the SOS DNA Repair Response in Escherichia coli. Journal of Bacteriology, 169, 3243-3250.

[13]   Raleigh, E.A., Murray, N.E., Revel, H., Blumenthal, R.M., Wastaway, D., Reith, A.D., Rigby, P.W.J., Elhai, J. and Hanahan, D. (1988) McrA and McrB Restriction Phenotypes of Some E. coli Strains and Implications for Gene Cloning. Nucleic Acids Research, 16, 1563-1575.
http://dx.doi.org/10.1093/nar/16.4.1563

[14]   Marinus, M.G. and Morris, N.R. (1973) Isolation of Deoxyribonucleic Acid Methylase Mutants of Escherichia coli K12. Journal of Bacteriology, 114, 1143-1150.

[15]   May, M. and Hattman, S. (1975) Analysis of Bacteriophage Deoxyribonucleic Acid Sequences Methylated by Host- and R-Factor-Controlled Enzymes. Journal of Bacteriology, 123, 768-770.

[16]   Wyatt, G.R. (1951) The Purine and Pyrimidine Composition of Deoxypentose Nucleic Acids. Biochemical Journal, 48, 584-590.

[17]   Vanyushin, B.F., Tkacheva, S. and Belozersky, A.N. (1970) Rare Bases in Animal DNA. Nature, 225, 948-994.
http://dx.doi.org/10.1038/225948a0

[18]   Gorovsky, M.A., Hattman, S. and Plager, G.L. (1973) [6N]methyl-adenine in the Nuclear DNA of a Eucaryote, Tetrahymena pyriformis. Journal of Cell Biology, 56, 697-701.
http://dx.doi.org/10.1083/jcb.56.3.697

[19]   Cummings, D.J., Tait, A. and Goddard, J.M. (1974) Methylated Bases in DNA from Paramecium aurelia. Biochimica et Biophysica Acta, 374, 1-11.
http://dx.doi.org/10.1016/0005-2787(74)90194-4

[20]   Buryanov, Y.I. and Skryabin, G.K. (1970) Detection of 6-Methylaminopurine in DNA of the Fungus Mucor hiemalis. Doklady Akademii Nauk SSSR, 195, 728-730.

[21]   Pakhomova, M.V., Zaitseva, G.N. and Belozersky, A.N. (1968) The Presence of 5-Methylcytosine and 6-Methylaminopurine in the Composition of DNA in Some Algae. Doklady Akademii Nauk SSSR, 182, 712-715.

[22]   Buryanov, Y.I., Eroshina, N.V., Vagabova, L.M. and Ilyin, A.V. (1972) On the Detection of 6-Methylaminopurine in DNA of Higher Plant Pollen. Doklady Akademii Nauk SSSR, 206, 992-994.

[23]   Urieli-Shove, S., Gruenbaum, Y., Sedat, J. and Razin, A. (1982) The Absence of Detectable Methylated Bases in Drosophila melanogaster DNA. FEBS Letters, 146, 148-152.
http://dx.doi.org/10.1016/0014-5793(82)80723-0

[24]   Adams, R.L.P., MacKay, E.L., Graig, L.M. and Burdon, R.H. (1979) Methylation of Mosquito DNA. Biochimica et Biophysica Acta, 563, 72-81.
http://dx.doi.org/10.1016/0005-2787(79)90008-X

[25]   Achwal, C.W., Ganguly, P. and Chandra, H.S. (1984) Estimation of the Amount of 5-Methylcytosine in Drosophila melanogaster DNA by Amplified ELISA and Photoacoustic Spectroscopy. EMBO Journal, 3, 263-266.

[26]   Lyko, F., Ramsahoye, B.H., Kashevsky, H., Tudor, M., Mastrangelo, M.A., Orr-Weaver, T.L. and Jaenish, R. (1999) Mammalian (Cytosine-5) Methyltransferases Cause Genomic DNA Methylation and Lethality in Drosophila. Nature Genetics, 23, 363-366.
http://dx.doi.org/10.1038/15551

[27]   Lyko, F., Ramsahoye, B.H. and Jaenisch, R. (2000) DNA Methylation in Drosophila melanogaster. Nature, 408, 538- 540.
http://dx.doi.org/10.1038/35046205

[28]   Gowher, H., Leismann, O. and Jeftsch, A. (2000) DNA of Drosophila melanogaster Contains 5-Methylcytosine. EMBO Journal, 19, 6918-6923.
http://dx.doi.org/10.1093/emboj/19.24.6918

[29]   Vanyushin, B.F., Mazin, A.L., Vasilyev, V.K. and Belozersky, A.N. (1973) The Content of 5-Methylcytosine in Animal DNA: The Species and Tissue Specificity. Biochimica et Biophysica Acta, 299, 397-403.
http://dx.doi.org/10.1016/0005-2787(73)90264-5

[30]   Vanyushin, B.F., Nemirovsky, L.E., Klimenko, V.V., Vasilyev, V.K. and Belozersky, A.N. (1973) The 5-Methylcytosine in DNA of Rats: Tissue and Age Specificity and the Changes Induced by Hydrocortisone and Other Agents. Gerontology, 19, 138-152.
http://dx.doi.org/10.1159/000211967

[31]   Vanyushin, B.F. and Belozersky, A.N. (1959) Base Composition of Deoxyribonucleic Acids of Higher Plants. Doklady Akademii Nauk SSSR, 129, 944-946.

[32]   Vanyushin, B.F. (1984) Replicative DNA Methylation in Animals and Higher Plants. Current Topics in Microbiology and Immunology, 108, 99-114.
http://dx.doi.org/10.1007/978-3-642-69370-0_7

[33]   Giuditta, A. and Volpe, P. (1967) Studies on an Unknown Compound from Ox Brain. I. Isolation and Analysis. Journal of Neurochemistry, 14, 626-636.
http://dx.doi.org/10.1111/j.1471-4159.1967.tb09566.x

[34]   Volpe, P. and Giuditta, A. (1967) Studies on an Unknown Compound from Ox Brain: II. Separation into Several Components. Journal of Neurochemistry, 14, 637-647.
http://dx.doi.org/10.1111/j.1471-4159.1967.tb09567.x

[35]   Eremenko, T., Benedetto, A. and Volpe, P. (1972) Poliovirus Replication during the HeLa Cell Life Cycle. Nature New Biology, 237, 114-116.
http://dx.doi.org/10.1038/newbio237114a0

[36]   Eremenko, T., Benedetto, A. and Volpe, P. (1972) Virus Infection as a Function of the Host Cell Cycle: Replication of Poliovirus RNA. Journal of General Virology, 16, 61-68.
http://dx.doi.org/10.1099/0022-1317-16-1-61

[37]   Volpe, P. and Giuditta, A. (1967) Kinetics of RNA Labelling in Fractions Enriched with Neuroglia and Neurons. Nature, 216, 154-155.
http://dx.doi.org/10.1038/216154a0

[38]   Volpe, P. and Giuditta, A. (1967) Biosynthesis of RNA in Neuron- and Glia-Enriched Fractions. Brain Research, 6, 228-240.
http://dx.doi.org/10.1016/0006-8993(67)90193-X

[39]   Jacob, F. and Monod, J. (1961) Genetic Regulatory Mechanisms in the Synthesis of Proteins. Journal of Molecular Biology, 3, 318-356.
http://dx.doi.org/10.1016/S0022-2836(61)80072-7

[40]   Tomkins, G.M. and Ames, B.N. (1966) The Operon Concept in Bacteria and in Higher Organisms. National Cancer Institute Monographs, 27, 221-234.

[41]   Volpe, P. and Strecker, H.J. (1968) Amphi-Directional Control of a Reversible Reaction Common to Two Enzyme Sequences. Biochemical and Biophysical Research Communications, 32, 240-245.
http://dx.doi.org/10.1016/0006-291X(68)90375-6

[42]   Volpe, P., Sawamura, R. and Strecker, H.J. (1969) Control of Ornithine-Delta-Ransaminase in Rat Liver and Kidney. Journal of Biological Chemistry, 244, 719-726.

[43]   Volpe, P. and Eremenko, T. (1971) Sructural Enzyme Heterogeneity as Expressed by Differential Regulation during the Phases of the Cell Cycle. Advances in Cytopharmacology, 1, 257-261.

[44]   Volpe, P. and Eremenko, T. (1971) Biochemical Differentiation and Cancerogenesis. In: Neskovic, B., Ed., Proceedings of the International Symposium on Experimental Oncology, Ognjon Prica Publishers, Zagreb, 200-203.

[45]   Volpe, P., Menna, T. and Pagano, G. (1974) Ornithine-Delta-Transaminase Heterogeneity and Regulation: Sequential Expression of the “Liver” and “Kidney” Enzyme Forms during the HeLa Cell Cycle. European Journal of Biochemistry, 44, 455-458.
http://dx.doi.org/10.1111/j.1432-1033.1974.tb03503.x

[46]   Volpe, P. and Eremenko, T. (1974) Preferential Methylation of Regulatory Gene Sequences in HeLa Cells. FEBS Letters, 44, 121-126.

[47]   Geraci, D., Eremenko, T., Cocchiara, R., Granieri, A., Scarano, E. and Volpe, P. (1974) Correlation between Synthesis and Methylation of DNA in HeLa Cells. Biochemical and Biophysical Research Communications, 57, 353-361.
http://dx.doi.org/10.1016/0006-291X(74)90937-1

[48]   Duranti, T., La Teana, A., Cacciamani, T. and Volpe, P. (2006) The Prokaryotic Origin of the Pathways for Synthesis and Post-Synthetic Modification of DNA. RNA Biology, 3, 49-53.
http://dx.doi.org/10.4161/rna.3.1.2794

[49]   Duranti, T., La Teana, A., Cacciamani, T. and Volpe, P. (2006) Evolution of the Pathways Leading to Synthesis and Modification of DNA. Journal of Biological Research, 81, 47-50.

[50]   Eremenko, T., Palitti, F., Morelli, F., Whitehead, E.P. and Volpe, P. (1985) Hypomethylation of Repair Patches in HeLa Cells. Molecular Biology Reports. 10, 177-182.
http://dx.doi.org/10.1007/BF00778526

[51]   Gehrke, C.W., Kuo, K.C., Davis, G.E., Suits, R.D., Waalkesb, R.D. and Borek, E. (1978) Quantitative High-Perfor- mance Liquid Chromatography of Nucleosides in Biological Materials. Journal of Chromatography, 150, 455-476.
http://dx.doi.org/10.1016/S0021-9673(00)88205-9

[52]   Marinus, M.G. (1987) DNA Methylation in Escherichia coli. Annual Review of Biochemistry, 21, 113-131.
http://dx.doi.org/10.1146/annurev.genet.21.1.113

[53]   Volpe, P. and Eremenko, T. (1989) Repair-Modification and Evolution of the Eukaryotic Genome Organization. Cell Biophysics, 15, 41-60.
http://dx.doi.org/10.1007/BF02991578

[54]   Volpe, P. (2007) Post-Synthetic Methylation of Macromolecules in Synchronized Mammalian Cells. Progress in DNA Methylation Research, 8, 203-224.

[55]   Feng, T.Y. and Chang, K.S. (1984) Persistence of Maternal Inheritance in Chlamydomonas Despite Hypomethylation of Chloroplast DNA Induced by Inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 81, 3438-3442.
http://dx.doi.org/10.1073/pnas.81.11.3438

[56]   Volpe, P. and Cascio, O. (1993) Detection of a Mammalian DNA Methylase Protein Family. Rendiconti Lincei, 4, 345-357.
http://dx.doi.org/10.1007/BF03001194

[57]   Volpe, P. and Cascio, O. (1994) Evolution of the DNA Methylase Protein Family in Vertebrates. Rendiconti Lincei, 5, 79-87.
http://dx.doi.org/10.1007/BF03001439

[58]   Franchina, M., Hooper, J. and Kay, P.H. (2001) Five Novel Alternatively Spliced Transcripts of DNA (Cytosine-5) Methyltransferase 2 in Human Peripheral Blood Leukocytes. International Journal of Biochemistry and Cell Biology, 33, 1104-1115.
http://dx.doi.org/10.1016/S1357-2725(01)00074-7

[59]   Scarano, E., Iaccarino, M., Grippo, P. and Parisi, E. (1967) Heterogeneity of Thymine Methyl Group Origin in DNA Pyrimidine Isostichs of Developing Sea Urchin Embryos. Proceedings of the National Academy of Sciences of the United States of America, 57, 1394-1400.
http://dx.doi.org/10.1073/pnas.57.5.1394

[60]   Holliday, R. and Pugh, J.E. (1975) DNA Modification Mechanisms and Gene Activity during Development. Science, 187, 226-232.
http://dx.doi.org/10.1126/science.1111098

[61]   Borek, E. (1975) Model for Differentiation Based on DNA Modifying Enzymes. Science, 190, 591-593.
http://dx.doi.org/10.1126/science.1188359

[62]   Bestor, T.H. and Ingram, V.M. (1983) Two Species of DNA Methyltransferase from Murine Erythroleukemia Cells: Purification, Sequence Specificity, and Mode of Interaction with DNA. Proceedings of the National Academy of Sciences of the United States of America, 80, 5559-5563.
http://dx.doi.org/10.1073/pnas.80.18.5559

[63]   Delfini, C., Crema, A.L., Alfani, E., Lo Presti, E., Eremenko, T. and Volpe, P. (1987) DNA-Methylases Separated through the HeLa Cell Cycle Methodology Show Allosteric Properties. FEBS Letters, 210, 17-21.

[64]   Eremenko, T., Delfini, C., Crema, A.L., Alfani, E. and Volpe, P. (1988) Uncoupling of the DNA Polymerase and Methylase Systems Leads to Hypomethylation of Repair Patches. Macromolecules in the Functioning Cell, 5, 37-41.

[65]   Volpe, P. and Eremenko, T. (1970) A Method to Measure the Length of Each Phase of the Cell Cycle in Spinner Cultures. Experimental Cell Research, 60, 456-458.
http://dx.doi.org/10.1016/0014-4827(70)90542-2

[66]   Volpe, P. and Eremenko, T. (1970) Quantitative Studies on Cell Proteins in Suspension Cultures. European Journal of Biochemistry, 12, 195-200.
http://dx.doi.org/10.1111/j.1432-1033.1970.tb00837.x

[67]   Volpe, P. and Eremenko, T. (1973) A Method for Measuring Cell Cycle Phases in Suspension Cultures. Methods in Cell Biology, 6, 113-126.
http://dx.doi.org/10.1016/S0091-679X(08)60049-7

[68]   Kappler, J.A. (1970) The Kinetics of DNA Methylation in Cultures of a Mouse Adrenal Cell Line. Journal of Cell Physiology, 75, 21-34.
http://dx.doi.org/10.1002/jcp.1040750104

[69]   Evans, H.H., Evans, T.E. and Littman, S. (1973) Methylation of Parental and Progeny DNA Strands in Physarum polycephalum. Journal of Molecular Biology, 74, 563-574.
http://dx.doi.org/10.1016/0022-2836(73)90047-8

[70]   Adams, R.L.P. and Hogarth, C. (1973) DNA Methylation in Isolated Nuclei: Old and New DNAs Are Methylated. Biochimica et Biophysica Acta, 331, 214-220.
http://dx.doi.org/10.1016/0005-2787(73)90434-6

[71]   Adams, R.L.P. (1974) Newly Synthesized DNA Is Not Methylated. Biochimica et Biophysica Acta, 335, 365-373.
http://dx.doi.org/10.1016/0005-2787(74)90159-2

[72]   Bird, A.P. (1978) Use of Restriction Enzymes to Study Eucaryotic DNA Methylation: The Symmetry of Methylated Sites Supports Semi-Conservative Copying of the Methylation Pattern. Journal of Molecular Biology, 118, 49-60.
http://dx.doi.org/10.1016/0022-2836(78)90243-7

[73]   Georgyev, G.P. and Mantieva, V.I. (1962) The Isolation of DNA-Like RNA and Ribosomal RNA from the Nucleolo-Chromosomal Apparatus of Mammalian Cells. Biochimica et Biophysica Acta, 61, 153-162.

[74]   Penman, S., Vesco, C. and Penman, M. (1968) Localization and Kinetics of Formation of Nuclear Heterodisperse RNA, Cytoplasmic Heterodisperse RNA and Polyribosome Associated Messenger RNA in HeLa Cells. Journal of Molecular Biology, 34, 49-62.
http://dx.doi.org/10.1016/0022-2836(68)90234-9

[75]   Georgyev, G.P. (1969) On the Structural Organization of Operon and on the Regulation of RNA Synthesis in Animal Cells. Journal of Theoretical Biology, 25, 227-231.
http://dx.doi.org/10.1016/S0022-5193(69)80034-2

[76]   Darnell, J.E., Jelinek, W.R. and Molloy, G.R. (1973) Biogenesis of mRNA: Genetic Regulation in Mammalian Cells. Science, 181, 1215-1221.
http://dx.doi.org/10.1126/science.181.4106.1215

[77]   Volpe, P. and Eremenko, T. (1973) Polysomes during the HeLa Cell Life Cycle. 9th International Congress of Biochemistry, Stockholm, Abstracts, 195.

[78]   Breathnach, R., Mandel, J.L. and Chambon, P. (1977) Ovalbumin Gene Is Split in Chicken DNA. Nature, 270, 314-319.
http://dx.doi.org/10.1038/270314a0

[79]   Brack, C. and Tonegawa, S. (1977) Variable and Constant Parts of the Immunoglobulin Light Chain Gene of a Mouse Myeloma Cell Are 1250 Nontranslated Bases Apart. Proceedings of the National Academy of Sciences of the United States of America, 74, 5652-5656.
http://dx.doi.org/10.1073/pnas.74.12.5652

[80]   Doel, M.T., Houghton, M., Cook, E.A. and Carey, N.H. (1977) The Presence of Ovalbumin mRNA Coding Sequences in Multiple Restriction Fragments of Chicken DNA. Nucleic Acids Research, 4, 3701-3713.
http://dx.doi.org/10.1093/nar/4.11.3701

[81]   Jeffreys, A.J. and Flavell, R.A. (1977) A Rabbit Beta-Globin Gene Contains a Large Insert in the Coding Sequence. Cell, 12, 1097-1108.
http://dx.doi.org/10.1016/0092-8674(77)90172-6

[82]   Leder, P., Tilghman, S.M., Tiemeier, D.C., Polsky, F.I., Seidman, J.G., Edgell, M.H., Enquist, L.W., Leder, A. and Norman, B. (1977) Cloning of Mouse Globin and Surrounding Gene Sequences in Bacteriophage lambda. Cold Spring Harbor Symposium on Quantitative Biology, 42, 915-920.
http://dx.doi.org/10.1101/SQB.1978.042.01.093

[83]   Berget, S.M., Moore, C. and Sharp, P.A. (1977) Spliced Segments at the 5’ Terminus of Adenovirus 2 Late mRNA. Proceedings of the National Academy of Sciences of the United States of America, 74, 3171-3175.
http://dx.doi.org/10.1073/pnas.74.8.3171

[84]   Chow, L.T.R., Gelinas, R.E., Broker, T.R. and Roberts, R.J. (1977) An Amazing Sequence Arrangement at the 5’ Ends of Adenovirus 2 Messenger RNA. Cell, 12, 1-8.
http://dx.doi.org/10.1016/0092-8674(77)90180-5

[85]   Tilghman, S.M., Tiemeier, D.C., Seldman, J.G., Peterlin, B.M., Sullivan, M., Maizel, J.V. and Leder, P. (1978) Intervening Sequence of DNA Identified in the Structural Portion of a Mouse Beta-Globin Gene. Proceedings of the National Academy of Sciences of the United States of America, 75, 725-729.
http://dx.doi.org/10.1073/pnas.75.2.725

[86]   Gilbert, W. (1978) Why Genes in Pieces. Nature, 271, 501.
http://dx.doi.org/10.1038/271501a0

[87]   Crick, F.H.C. (1979) Split Genes and RNA Splicing. Science, 204, 264-271.
http://dx.doi.org/10.1126/science.373120

[88]   Maclean, M. and Hilder, V.A. (1977) Mechanisms of Chromatin Activation and Repression. International Review of Cytology, 48, 54-97.
http://dx.doi.org/10.1016/S0074-7696(08)61742-8

[89]   Tentravahi, V., Guntaka, R.V., Erlanger, B.F. and Miller, O.J. (1981) Amplified Ribosomal RNA Genes in a Rat Hepathoma Cell Line Are Enriched in 5-Methylcytosine. Proceedings of the National Academy of Sciences of the United States of America, 78, 489-493.
http://dx.doi.org/10.1073/pnas.78.1.489

[90]   Volpe, P. (1976) The Gene Expression during the Cell Life Cycle. Horizons in Biochemistry and Biophysics, 2, 285-340.

[91]   Eremenko, T., Menna, T. and Volpe, P. (1979) Differential Gene Expression during the Cell Life Cycle. Macromolecules in the Functioning Cell, 1, 79-108.
http://dx.doi.org/10.1007/978-1-4684-3465-1_7

[92]   Eremenko, T. and Volpe, P. (1984) Virus Genome Integration as a Function of the Host Cell Genome Replicative Cycle. FEBS Letters, 169, 211-214.

[93]   Volpe, P. and Eremenko, T. (1984) Position of the Integration Site of SV40 Virus Genome at the Level of the Transcriptional Unit. Voprosy Virusologii, 5, 610-619.

[94]   Volpe, P. and Eremenko, T. (1984) Resumption of Transcription Following Inhibition of DNA Methylation. Macromolecules in the Functioning Cell, 3, 59-69.

[95]   Volpe, P. and Eremenko, T. (1985) The Gene Repair-Modification System in Eukaryotes. In: Ovcinnikov, Y.A., Ed., Proceedings of the 16th FEBS Congress, Vol. 3, Science Press, Utrecht, 123-129.

[96]   Volpe, P. and Eremenko, T. (1986) Differential Evolution of Coding and Non-Coding Eukaryotic DNAs through Repair-Modification. Macromolecules in the Functioning Cell, 4, 8-20.

[97]   Eremenko, T., Esposito, C., Iacovacci, P., Benedetto, A., Elia, G., Delfini, C., Alfani, E., Cascio, O., Sarpietro, M.G., Fazzio, A. and Volpe, P. (1990) Is 5-Methylcytosine a Regulatory Signal in Eukaryotic Gene Expression? 7th International Symposium on Macromolecules in the Functioning Cell, Taormina, Abstracts, 22.

[98]   Volpe, P., Esposito, C., Iacovacci, P., Butler, R.H. and Eremenko, T. (1993) Language of Genes with Inverse Correlation between Methylation and Transcription. Macromolecules in the Functioning Cell, 7, 59-71.

[99]   Volpe, P., Iacovacci, P., Butler, R.H. and Eremenko, T. (1993) 5-Methylcytosine in Genes with Methylation-Dependent Regulation. FEBS Letters, 329, 233-237.
http://dx.doi.org/10.1016/0014-5793(93)80228-M

[100]   Scarano, E. (1969) Enzymatic Modifications of DNA and Embryonic Differentiation. Annals in Embryology and Morphology, Suppl. 1, 51-61.

[101]   Volpe, P. and Eremenko, T. (1973) Nuclear and Cytoplasmic DNA Synthesis during the Mitotic Cycle of HeLa Cells. European Journal of Biochemistry, 32, 227-232.
http://dx.doi.org/10.1111/j.1432-1033.1973.tb02600.x

[102]   Volpe, P. and Eremenko, T. (1978) A Language of DNA Modification during Replication. 14th International Congress of Genetics, Moscow, Abstracts, 1, 194.

[103]   Lima de Faria, A. (1969) Handbook of Molecular Cytology. Wiley, New York, 277-283.

[104]   Comings, D.E. (1972) Methylation of Euchromatic and Heterochromatic DNA. Experimental Cell Research, 74, 383-391.
http://dx.doi.org/10.1016/0014-4827(72)90391-6

[105]   Volpe, P., Granieri, A. and Eremenko, T. (1975) Negli eucarioti i geni si metilano ordinatamente durante la replica. 12th Meeting of the Italian Society of Biophysics and Molecular Biology, Pavia, Abstracts, 49.

[106]   Eremenko, T., Granieri, A. and Volpe, P. (1978) Organization, Replication and Modification of the Human Genome: I. Differential Methylation of Two Classes of HeLa Nuclear DNA Separated on Ag+/Cs2SO4 Gradients. Molecular Biology Reports, 4, 163-170.
http://dx.doi.org/10.1007/BF00777518

[107]   Eremenko, T., Granieri, A. and Volpe, P. (1978) Organization, Replication and Modification of the Human Genome: II. Temporal Order of Synthesis and Methylation of Two Classes of HeLa nDNA Separated in Ag+/Cs2SO4 Gradients. Molecular Biology Reports, 4, 237-240.
http://dx.doi.org/10.1007/BF00777561

[108]   Eremenko, T., Timofeeva, M.Y. and Volpe, P. (1980) Organization, Replication and Modification of the Human Genome: Synthesis and Methylation of Palindromic, Repeated and Unique Hela nDNA Sequences during the S-Phase. Molecular Biology Reports, 6, 131-136.
http://dx.doi.org/10.1007/BF00775405

[109]   Volpe, P. and Eremenko, T. (1982) Cell and Virus Macromolecular Modification during the Cell Life Cycle. Macromolecules in the Functioning Cell, 2, 179-195.

[110]   Volpe, P., Menna, T. and Eremenko, T. (1976) RNA Transcription and Processing as a Function of the Cell Cycle. Bulletin of Molecular Biology and Medicine, 1, 18-28.

[111]   Eremenko, T. and Volpe, P. (1975) Polysome Translational State during the Cell Cycle. European Journal of Biochemistry, 52, 203-210.
http://dx.doi.org/10.1111/j.1432-1033.1975.tb03988.x

[112]   Delfini, C., Alfani, E., De Venezia, V., Oberholtzer, G., Tomasello, C., Eremenko, T. and Volpe, P. (1985) Cell-Cycle Dependence and Properties of the HeLa Cell DNA Polymerase System. Proceedings of the National Academy of Sciences of the United States of America, 82, 2220-2224.
http://dx.doi.org/10.1073/pnas.82.8.2220

[113]   Battacharya, S.K., Ramchandani, S., Cervoni, N. and Szyf, M. (1999) A Mammalian Protein with Specific Demethylase Activity for mCpG DNA. Nature, 397, 579-583.
http://dx.doi.org/10.1038/17533

[114]   Volpe, P. and Eremenko, T. (1994) Complete and Incomplete Repair of Radiodamaged Gene Sequences. UNESCO Technical Reports, 19, 27-43.

[115]   Kruger, D., Schroeder, C., Reuter, M., Bogdarina, I., Buryanov, Y. and Bickle, T. (1985) DNA Methylation of Bacterial Viruses T3 and T7 by Different DNA Methylases in Escherichia coli K12 Cells. European Journal of Biochemistry, 150, 323-330.
http://dx.doi.org/10.1111/j.1432-1033.1985.tb09024.x

[116]   Mandel, J.L. and Chambon, P. (1979) DNA Methylation: Organ Specific Variations in the Methylation Pattern within and Oround Ovalbumin and Other Chicken Genes. Nucleic Acids Research, 7, 2081-2092.
http://dx.doi.org/10.1093/nar/7.8.2081

[117]   Sutter, D. and Doerfler, W. (1980) Methylation of Integrated Adenovirus Type 12 DNA Sequences in Trasformed Cells Is Inversely Correlated with Viral Gene Expression. Proceedings of the National Academy of Sciences of the United States of America, 77, 253-256.
http://dx.doi.org/10.1073/pnas.77.1.253

[118]   Liau, M.C., Chang, C.F., Saunders, G.F. and Tsai, Y.H. (1981) S-Adenosylhomocysteine Hydrolases as the Primary Target Enzymes in Androgen Regulation of Methylated Complexes. Archives of Biochemistry and Biophysics, 208, 261-272.
http://dx.doi.org/10.1016/0003-9861(81)90148-X

[119]   Geraci, D., Eremenko, T., Granieri, A., Scarano, E. and Volpe, P. (1973) The in Vivo and in Vitro Methylation of DNA in Synchronized HeLa Cells. 9th International Congress of Biochemistry, Stockholm, Abstracts, 3m64, 190.

[120]   Razin, A. and Riggs, A.D. (1980) DNA Methylation and Gene Function. Science, 210, 604-610.
http://dx.doi.org/10.1126/science.6254144

[121]   Eden, S. and Cedar, H. (1994) Role of DNA Methylation in the Regulation of Transcription. Current Opinions in Genetics and Development, 4, 255-259.
http://dx.doi.org/10.1016/S0959-437X(05)80052-8

[122]   Razin, A. (1998) CpG Methylation, Chromatin Structure and Gene Silencing—A Three-Way Connection. EMBO Journal, 17, 4905-4908.
http://dx.doi.org/10.1093/emboj/17.17.4905

[123]   Bird, A.P. and Wolffe, A.P. (1999) Methylation-Induced Repression: Belts, Braces and Chromatin. Cell, 99, 451-454.
http://dx.doi.org/10.1016/S0092-8674(00)81532-9

[124]   Volpe, P., Menna, T. and Eremenko, T. (1978) Supermethylation of Eukaryotic nDNA after Oncovirus Genome Integration. 11th European Tumor Virus Meeting, Balatonfured, Abstracts, 4, 194.

[125]   Eremenko, T. and Volpe, P. (1984) In Vitro Methylation of Total and Foldback DNAs in Normal and Virus-Transformed Cells. FEBS Letters, 173, 233-237.

[126]   Grippo, P., Iaccarino, M., Parisi, E. and Scarano, E. (1968) Methylation of DNA in Developing Sea Urchin Embryos. Journal of Molecular Biology, 36, 195-208.
http://dx.doi.org/10.1016/0022-2836(68)90375-6

[127]   Doskocil, J. and Sormova, Z. (1965) The Occurrence of 5-Methylcytosine in Bacterial Deoxyribonucleic Acid. Biochimica et Biophysica Acta, 95, 513-515.
http://dx.doi.org/10.1016/0005-2787(65)90199-1

[128]   Eremenko, T., Granieri, A., Scarano, E. and Volpe, P. (1975) Fractionation of Methylated Nuclear DNA in HeLa Cells. 10th FEBS Meeting, Paris, Abstracts, 130.

[129]   Augusti-Tocco, G., Carestia, C., Grippo, P., Parisi, E. and Scarano, E. (1968) Thin-Layer Electrophoresis of Nucleic Acid Derivatives on Microcrystalline Cellulose. Biochimca et Biophysica Acta, 155, 8-18.
http://dx.doi.org/10.1016/0005-2787(68)90329-8

[130]   Eremenko, T. and Volpe, P. (1976) Replica semiconservativa del DNA metilato. 13th Meeting of the Italian Society of Biophysics and Molecular Biology, Albano Laziale, Abstracts, 23.

[131]   Lu, S., Saydak, M., Gentile, V., Steins, J.P. and Davies, J.A. (1995) Isolation and Characterization of the Human Tissue Transglutaminase Gene Promoter. Journal of Biological Chemistry, 270, 9748-9756.
http://dx.doi.org/10.1074/jbc.270.17.9748

[132]   Clark, S.J., Harrison, J., Paul, C.L. and Frommer, M. (1994) High Sensitivity Mapping of Methylated Cytosines. Nucleic Acids Research, 22, 2990-2997.
http://dx.doi.org/10.1093/nar/22.15.2990

[133]   Frommer, M., McDonald, L.E., Millar, D.S., Collins, C., Watt, F., Grigg, G.W., Molloy, P.L. and Paul, C.L. (1992) A Genomic Sequencing Protocol That Yields a Positive Display of 5-Methylcytosine Residues in Individual DNA Strands. Proceedings of the National Academy of Sciences of the United States of America, 89, 1827-1831.
http://dx.doi.org/10.1073/pnas.89.5.1827

[134]   Clark, S.J., Harrison, J. and Frommer, M. (1995) CpNpG Methylation in Mammalian Cells. Nature Genetics, 10, 20-27.
http://dx.doi.org/10.1038/ng0595-20

[135]   Lu, S. and Davies, P.J.A. (1997) Regulation of the Expression of the Tissue Transglutaminase Gene by DNA Methylation. Proceedings of the National Academy of Sciences of the United States of America, 94, 4692-4697.
http://dx.doi.org/10.1073/pnas.94.9.4692

[136]   Cacciamani, T., Virgili, S., Centurelli, M., Bertoli, E., Eremenko, T. and Volpe, P. (2002) Specific Methylation of the CpG-Rich Domains in the Promoter of the Human Tissue Transglutaminase Gene. Gene, 297, 103-112.
http://dx.doi.org/10.1016/S0378-1119(02)00874-0

[137]   Razin, A. and Cedar, H. (1977) Distribution of 5-Methylcytosine in Chromatin. Proceedings of the National Academy of Sciences of the United States of America, 74, 2725-2728.
http://dx.doi.org/10.1073/pnas.74.7.2725

[138]   Volpe, P. (2005) The Language of Methylation in Genomics of Eukaryotes. Biochemistry (Moscow), 70, 584-595.
http://dx.doi.org/10.1007/s10541-005-0152-x

[139]   Meehan, R., Antequera, F., Lewis, J., McLeod, D., McKay, S., Kleiner, E. and Bird, A.P. (1990) A Nuclear Protein That Binds Preferentially to Methylated DNA in Vitro May Play a Role in the Inaccessibility of Methylated CpGs in Mammalian Nuclei. Philosophical Transactions of the Royal Society of London, B326, 199-205.
http://dx.doi.org/10.1098/rstb.1990.0004

[140]   Nan, X., Ng, H.-H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N. and Bird, A.P. (1998) Transcriptional Repression by the Methyl-CpG-Binding Protein MeCP2 Involves a Histone Deacetylase Complex. Nature, 393, 386- 389.
http://dx.doi.org/10.1038/30764

[141]   Wade, P.A., Gegonne, A., Jones, P.L., Ballestar, E., Aubry, F. and Wolffe, A.P. (1999) Mi-2 Complex Couples DNA Methylation to Chromatin Remodelling and Histone Deacetylation. Nature Genetics, 23, 62-66.
http://dx.doi.org/10.1038/12664

[142]   Volpe, P. and Eremenko, T. (1995) Repair-Modification of Radiodamaged Genes. Radiation Protection Dosimetry, 62, 19-22.

[143]   Volpe, P., Parasassi, T., Sapora, O., Ravagnan, G. and Eremenko, T. (1999) Influence of the Low Doses of Radiation on the DNA Double Helix, Gene Expression and Membranal State. International Journal of Radiation Medicine, 1, 78-89.

[144]   Volpe, P. (2001) The Gene “Repair-Modification” Theory in Biophysics of Radiations. International Journal of Radiation Medicine, 3, 123-137.

[145]   Marmur, J. (1961) A Procedure for the Isolation of Deoxiribonucleic Acid from Microorganisms. Journal of Molecular Biology, 3, 208-218.
http://dx.doi.org/10.1016/S0022-2836(61)80047-8

[146]   Volpe, P., Iacovacci, P., Esposito, C. and Eremenko, T. (1992) A Common Language in Eukaryotic Genes with Methylation-Dependent Regulation. Rendiconti Lincei, 3, 383-394.

[147]   Volpe, P. (1996) Dall’origine del codice all’evoluzione del gene eucariotico (Lectio Doctoralis in Occasion of the Laurea Honoris Causa in Biological Sciences with Biotechnological Specialization). Università degli Studi, Ancona, 1-35.

[148]   Volpe, P. (1999) Introduzione alla Biofisica delle Radiazioni. UNESCO Publishers, Venice, 1-256.

[149]   Volpe, P. (2014) A Theoretical Overview of Bioresponse to Magnetic Fields on the Earth’s Surface. International Journal of Geosciences, 5, 1149-1162.
http://dx.doi.org/10.4236/ijg.2014.510097

[150]   Kruger, D.H., Shroeder, C., Reuter, M., Bogdarina, I.G., Buryanov, Y.I. and Bickle, T.A. (1985) DNA Methylation of Bacterial Viruses T3 and T7 by Different DNA Methylases in Escherichia coli K12 Cells. European Journal of Biochemistry, 150, 323-330.
http://dx.doi.org/10.1111/j.1432-1033.1985.tb09024.x

[151]   Gorelick, R. (2003) Transposable Elements Suppress Recombination in All Meiotic Eukaryotes, Including Automictic Ancient Asexuals: A Reply to Schon and Martens. Journal of Natural History, 37, 903-909.
http://dx.doi.org/10.1080/0022293021000007705

[152]   Gorelick, R. (2005) Theory for Why Dioecious Plants Have Equal Length Sex Chromosomes. American Journal of Botany, 92, 979-984.
http://dx.doi.org/10.3732/ajb.92.6.979

[153]   Lingua, G., Trotta, A., Prigione, V., Ugoccioni, R. and Berta, G. (2005) Nucleus Size in the Host Cells of an Arbuscular Mycorrhizal System: A Mathematical Approach to Estimate the Role of Ploidy and Chromatin Condensation. Karyologia, 58, 112-121.

[154]   Zemskov, E.A., Janiak, A., Hang, J., Waghray, A. and Belkin, A.M. (2006) The Role of Tissue Transglutaminase in Cell-Matrix Interactions. Frontiers in Bioscience, 11, 1057-1076.
http://dx.doi.org/10.2741/1863

[155]   Lai, T.S., Liu, Y., Li, W. and Greenberg, C.S. (2007) Identification of Two GTP-Independent Alternatively Spliced Forms of Tissue Transglutaminase in Human Leukocytes, Vascular Smooth Muscle,and Endothelial Cells. FASEB Journal, 21, 4131-4143.
http://dx.doi.org/10.1096/fj.06-7598com

[156]   Malousi, A., Maglaveras, N. and Kouidou, S. (2008) Intronic CpG Content and Alternative Splicing in Human Genes Containing a Single Cassette Exon. Epigenetics, 3, 69-73.
http://dx.doi.org/10.4161/epi.3.2.6066

[157]   Lukasik, M., Karmalska, J., Szutowski, M.M. and Lukaszkiewicz, J. (2009) Wplyw metylacji DNA na funkcjonowanie genomu. Biuletyn Wydzialu Farmaceutycznego Warszawskiego Uniwersytetu Medycznego, 2, 13-18.

[158]   Shleikin, A.G. and Danilov, N.P. (2011) Evolutionary-Biological Peculiarities of Transglutaminase. Structure, Physiological Functions, Application. Journal of Evolutionary Biochemistry and Physiology, 47, 1-14.
http://dx.doi.org/10.1134/S0022093011010014

[159]   Lytvynenko, O.O. and Bugaicov, S.G. (2013) Ionizing Radiation in the Process of Initiation and Development of Cancer Pathology. Archiv Klinichnoj ta Eksperimentalnoj Medizini, 22, 120-123.

[160]   Lytvynenko, O. and Bugaitsov, S. (2013) Ionizing Radiation in Origin and Development Oncology Pathology. Actual Problems of Transport Medicine, 4, 18-23.

 
 
Top