JBPC  Vol.6 No.2 , May 2015
Interactions between Phospholipid Monolayers (DPPC and DMPC) and Anesthetic Isoflurane Observed by Quartz Crystal Oscillator
Abstract: The interactions of phospholipid monolayers (dipalmitoyl phosphatidyl choline; DPPC and dimyristoyl phosphatidyl choline; DMPC) with volatile anesthetic isoflurane were investigated using quartz crystal microbalance (QCM) and quartz crystal impedance (QCI) methods. The quartz crystal oscillator was attached horizontally on the surface of DPPC and DMPC monolayer formed on the water surface. Physisorption of isoflurane hydrate at the DPPC monolayer surface was monitored in terms of frequency and resistance change of quartz crystal on addition of anesthetics isoflurane. Both frequency and resistance change showed the elastic nature of DPPC monolayer. Measurement of DMPC monolayer-isoflurane hydrate revealed the expandable nature of DMPC monolayer. Variation of frequency and impedance of DPPC and DMPC monolayer on addition of isoflurane which proved a two-step change has occurred at monolayer surface at isoflurane concentration of ≤8 mM that has been attributed to isoflurane aggregation at monolayer/water interface. Isoflurane hydrates formed in the process have capability to affect the interfacial properties of monolayer such as existence of structured water.
Cite this paper: Yamamoto, Y. , Yokoyama, T. , Yoshida, D. , Mori, H. , Sekiguchi, K. , Shimoaki, T. , Yoshino, A. , Taga, K. , Shervani, Z. , Yamamoto, M. (2015) Interactions between Phospholipid Monolayers (DPPC and DMPC) and Anesthetic Isoflurane Observed by Quartz Crystal Oscillator. Journal of Biophysical Chemistry, 6, 42-53. doi: 10.4236/jbpc.2015.62005.

[1]   Singer, S.J. and Nicolson, G.L. (1972) The Fluid Mosaic Model of the Structure of Cell Membranes. Science, 175, 720-731.

[2]   Simons, K. and Ikonen, E. (1997) Functional Rafts in Cell Membranes. Nature, 387, 569-572.

[3]   Gennis, R.B. (1990) Biomembrane, Molecular Structure and Function. Springer, New York.

[4]   Gellman, S.H. (1997) Molecular Recognition. Chemical Reviews, 97, 1231-1232.

[5]   Arai, T. (2001) Lectures for Anesthesia and Resuscitation. Kokuseido Co. Ltd., Tokyo.

[6]   Yoshimura, N. (2002) Standard Anesthesia Science. Igaku-Shoin Ltd., Tokyo.

[7]   Hyodo, M. (2006) Anesthesiology 11 Review. Kinpodo Inc., Kyoto.

[8]   Ueda, I. and Yoshida, T. (2002) Interaction of Volatile An-Esthetics with Micellar Systems. In: Encyclopedia of Surface and Colloid Science, Marcel Dekker, Inc., New York.

[9]   Matsuki, H. and Ueda, I. (2001) Are There Any Specific Receptors for Anesthetics? Seibutsu Butsuri, 41, 4-8.

[10]   Cherkin, A. and Catchpool, J.F. (1964) Temperature Dependence of Anesthesia in Goldfish. Science, 144, 1460-1462.

[11]   Flook, V., Adey, G.D., Dundas, C.R. and White, D.C. (1974) Effect of Temperature on Potency of Anesthetic Agents. Journal of Applied Physiology, 37, 552-555.

[12]   McKenzie, J.D., Calow, P., Clyde, J., Miles, A., Dickinson, R. and Lieb, W.R. (1992) Effect of Temperature on the Anaesthetic Potency of Halothane, Enflurane and Ethanol in Daphnia Magna (Cladocera: Crustacea). Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 101, 15-19.

[13]   Yoshida, T., Okabayashi, H., Kamaya, H. and Ueda, I. (1989) Stable and Unstable Binding of a Volatile Anesthetic Enflurane with Model Lipid Vesicle Membranes. Biochimca et Biophysica Acta, 979, 287-293.

[14]   Cantor, R.S. (1997) The Lateral Pressure Profile in Membranes: A Physical Mechanism of General Anesthesia. Biochemistry, 36, 2339-2344.

[15]   Yamamoto, Y., Shervani, Z., Shimoaki, T., Yokoyama, T., Ando, T., Somekawa, A., Takayama, M., Tamaoki, K., Yoshida, T., Taga, K., Kamaya, H. and Ueda, I. (2010) Physisorption Behavior of Enflurane on the Dipalmitoyl Phosphatidyl Choline (DPPC) Monolayer Using High Sensitive Quartz Crystal Oscillator Method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 367, 47-51.

[16]   Sauerbrey, G. (1959) Verwendung von schwingquarzen zur wung dner schichten und zur mikrowung. Zeitschrift fur Physik, 155, 206-222.

[17]   Nomura, T. and Minemura, A. (1980) Behavior of a Piezoelectric Quartz Crystal in an Aqueous Solution and the Application to the Determination of Minute Amount of Cyanide. Chemical Society of Japan, 10, 1621-1625.

[18]   Bruckenstein, S. and Shay, M. (1985) An in Situ Weighing Study of the Mechanism for the Formation of the Adsorbed Oxygen Monolayer at a Gold Electrode. Journal of Electroanalytical Chemistry, 188, 131-136.

[19]   Aoki, K., Miyamoto, T. and Ohsawa, Y. (1989) The Determination of the Selectivity Coefficient of Na+ versus Li+ on Prussian Blue Thin Film in Propylene Carbon-Ate by Means of a Quartz Crystal Microbalance. Bulletin of Chemical Society of Japan, 62, 1658-1659.

[20]   Ebara, Y. and Okahata, Y. (1994) A Kinetic Study of Concanavalin: A Binding to Glycolipid Monolayers by Using a Quartz Crystal Microbalance. Journal of American Chemical Society, 116, 11209-11212.

[21]   Sato, T., Serizawa, T., Ohtake, F., Nakamura, M., Terabayashi, T., Kawanishi, Y. and Okahata, Y. (1998) Quantitative Measurements of the Interaction between Monosialoganglioside Monolayers and Wheat Germ Agglutinin (WGA) by a Quartz Crystal Microbalance. Biochimica et Biophysica Acta, 1380, 82-92.

[22]   Matsuno, H., Furusawa, H. and Okahata, Y. (2005) Kinetic Studies of DNA Cleavage Reactions Catalyzed by an ATP-Dependent Deoxyribonuclease on a 27-MHz Quartz-Crystal Microbalance. Biochemistry, 44, 2262-2270.

[23]   Tatsuma, T. and Oyama, N. (1993) Suishoushindousi niyoru kotaihyoumen no kyarakutarizetion to sono DNA kensyutu heno ouyou. Tyouonpa TECHNO, 5, 33-36.

[24]   Muramatsu, H. and Kimura, K. (1992) Quartz Crystal Detector for Microrheological Study and Its Application to Phase Transition Phenomena of Langmuir-Blodgett Films. Analytical Chemistry, 64, 2502-2507.

[25]   Yuan, Y., Cai, Y., Zie, Q. and Yao, S. (2002) Piezoelectric Quartz Crystal Impedance Study of the Pb2+-Induced Precipitation of Bovine Serum Albumin and Its Dissolution with EDTA in an Aqueous Solution. Analytical Science, 18, 767-771.

[26]   Xie, Q., Xiang, C., Zhang, Y., Yuan, Y., Liu, M., Nie, L. and Yao, S. (2002) In Situ Monitoring of Gold-Surface Adsorption and Acidic Denaturation of Human Serum Albumin by an Isolation-Capacitance-Adopted Electrochemical Quartz Crystal Impedance System. Analytica Chimica Acta, 464, 65-77.

[27]   Yamamoto, Y., Taga, K., Yoshida, T., Kamaya, H. and Ueda, I. (2006) Action Mechanism of Water Soluble Ethanol on Phospholipid Monolayers Using a Quartz Crystal Oscillator. Journal of Colloid and Interface Science, 298, 529-534.

[28]   Yamamoto, Y., Ando, T., Takayama, M., Egami, T., Ohtsu, Y., Sakurai, A., Yoshida, T., Taga, K., Kamaya, H. and Ueda, I. (2008) Interaction between Phospholipid Mono-Layer and Volatile Anesthetics Using Quartz Crystal Oscillator Methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317, 568-575.

[29]   Hatta, I. and Murata, M. (2000) Seitaimaku no Dynamics. Kyoritsu Shuppan Co., Ltd., Tokyo.

[30]   Yoshida, D., Yokoyama, T., Shimoaki, T., Tomita, T., Yoshida, T., Yamamoto, Y., Taga, K., Sumino, A., Dewa, T., Nango, M., Yamamoto, M. and Shervani, Z. (2013) Morphology Observation of Dipalmitoylphosphatidyl Choline (DPPC) Monolayer on Water Surface by Dropping Method. Journal of Biophysical Chemistry, 4, 114-121.

[31]   Sato, T., Serizawa, T. and Okahata, Y. (1994) Recognition of Monosialoganglioside (GM3) Reconstituted in Sphingomyerin and Glucosylceramide Membranes against Wheat Germ Agglutinin: Quantitative Analyses by a Quartz Crystal Microbalance. Biochemical and Biophysical Research Communications, 204, 551-556.

[32]   Ebara, Y., Itakura, K. and Okahata, Y. (1996) Kinetic Studies of Molecular Recognition Based on Hydrogen Bonding at the Air-Water Interface by Using a Highly Sensitive Quartz-Crystal Microbalance. Langmuir, 12, 5165-5170.

[33]   Okahata, Y. and Furusawa, H. (2004) Gravimetry of Biomolecules at the Water-Substrate Interface—Quartz-Crystal Microbalance. Journal of Surface Science Society of Japan, 25, 131-138.

[34]   Ueda, I. and Yoshida, T. (1999) Hydration of Lipid Membranes and the Action Mechanisms of Anesthetics and Alcohols. Chemistry and Physics of Lipids, 101, 65-79.

[35]   Makino, M. and Kamiya, M. (1996) Effects of Local An-Esthetics on the Dynamic Behavior of Phospholipid Thin Film. Langmuir, 12, 4211-4217.

[36]   Matsuura, N., Elliot, D.J., Frulong, D.N. and Grieser, F. (1997) In Situ Measurement of Lead (II) Ion Binding to an Arachidic Acid Langmuir Monolayer Using a Quartz Crystal Microbalance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 126, 189-195.

[37]   Vilallonga, F. (1968) Surface Chemistry of L-α-Dipalmitoyl Lecithin at the Air-Water Interface. Biochimica et Biophysica Acta, 163, 290-300.

[38]   Ohe, C., Sasaki, T., Noi, M., Goto, Y. and Itoh, K. (2007) Sum Frequency Generation Spectroscopic Study of the Condensation Effect of Cholesterol on a Lipid Monolayer. Analytical and Bioanalytical Chemistry, 388, 73-79.

[39]   Mingotaud, A.F., Mingotaud, C. and Patterson, L.K. (1993) Handbook of Monolayers Vol. 1 and 2. Academic Press Inc., California.

[40]   Yamamoto, M., Yoshida, D., Mori, H., Sekiguchi, K. and Yamamoto, Y. (in preparation) Lower-Density Condensed Langmuir Films of Dipalmitoylphosphatidylcholine Utilizing the Two Hydrocarbon Chains of Each Molecule.

[41]   Yamamoto, Y., Shervani, Z., Shimoaki, T., Yoshida, D., Yokoyama, T., Yoshida, T., Taga, K., Kamaya, H. and Ueda, I. (2011) Study of Physisorption of Volatile Anesthetics on Phospholipid Monolayers Using a Highly Sensitive Quartz Crystal Microbalace (HS-QCM). Journal of Biophysical Chemistry, 2, 68-74.

[42]   Nakagaki, M., Tomita, K. and Handa, T. (1985) Interaction of Differently Oriented Lipids in Monolayer: Mixed Monolayers of 16-(9-Anthroyloxy)palmitic Acid with Phosphatidylcholine and Cholesterol. Biochemistry, 24, 4619-4624.

[43]   Nagayama, K. (2000) Mizu to Seimei. Kyoritsu Shuppan Co., Ltd., Tokyo.

[44]   Seto, N., Mashimo, T., Yoshiya, I. and Taniguchi, Y. (1991) Kyunyumasuiyaku no youkaido-Masuikikoukenkyuu no tameni. Anesthesia and Resuscitation, 27, 321-324.

[45]   Bergadano, A., Lauber, R., Zbinden, A., Schatzmann, U. and Moens, Y. (2003) Blood/Gas Partition Coefficients of Halothane, Isoflurane and Sevoflurane in Horse Blood. British Journal of Anaesthesia, 91, 276-278.

[46]   Yamamoto, Y., Taga, K., Yoshida, T., Kamaya, H. and Ueda, I. (2006) Temperature Dependence of Thermodynamic Activity in Volatile Anesthetics: Correlation between Anesthetic Potency and Activity. Journal of Colloid and Interface Science, 301, 488-492.

[47]   Yokono, S., Shieh, D.D. and Ueda, I. (1981) Interfacial Preference of Anesthetic Action upon the Phase Transition of Phospholipid Bilayers and Partition Equilibrium of Inhalation Anesthetics between Membrane and Deuterium Oxide. Biochimica et Biophysica Acta, 645, 237-242.

[48]   Hauet, N., Artzner, F., Boucher, F., Gabrielle-Madelmont, C., Clouteir, I., Keller, G., Lesieur, P., Durand, D. and Patermostre, M. (2003) Interaction between Artificial Membranes and Enflurane, a General Volatile Anesthetic: DPPC- Enflurane Interaction. Biophysical Journal, 84, 3123-3137.

[49]   Yoshida, T., Takahashi, K., Kamaya, H. and Ueda, I. (1988) 19F-NMR Study on Micellar Solubilization of a Volatile Anesthetic Halothane: Dose-Related Biphasic Interaction. Journal of Colloid and Interface Science, 124, 177-185.

[50]   Yoshida, T., Takahashi, K. and Ueda, I. (1989) Molecular Orientation of Volatile Anesthetics at the Binding Surface: 1H- and 19F-NMR Studies of Submolecular Affinity. Biochimica et Biophysica Acta, 985, 331-333.

[51]   Yoshino, A., Yoshida, T. and Takahashi, K. (1989) 2H NMR Study of the Behaviour of Water in a Reversed Mi-Cellar System: Hydrogen Bond Breaking and Clathrate Formation by an Inhalation Anaesthetic. Magnetic Resonance in Chemistry, 27, 344-347.

[52]   Gaussion Literature Citation. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J. and Fox, D.J. (2009) Gaussian 09. Revision D.01, Gaussian, Inc., Wallingford CT.

[53]   Tsuboi, K., Seki, K., Ouchi, Y., Fujita, K. and Kajikawa, K. (2003) Formation of Merocyanine Self-Assembled Monolayer and Its Nonlinear Optical Properties Probed by Second-Harmonic Generation and Surface Plasmon Resonance. Japan Journal of Applied Physics, 42, 607-613.

[54]   Naraoka, R., Kaise, G., Kajikawa, K., Okawa, H., Ikezawa, H. and Hashimoto, K. (2002) Nonlinear Optical Property of Hemicyanine Self-Assembled Monolayers on Gold and Its Adsorption Kinetics Probed by Optical Second-Harmonic Generation and Surface Plasmon Resonance Spectroscopy. Chemical Physics Letters, 362, 26-30.

[55]   Kondo, S., Abe, I. and Ishikawa T. (2001) Kyuchaku no Kagaku. Maruzen Publishing Co. Ltd., Tokyo.

[56]   Mashimo, T., Ogli, K. and Uchida, I. (2005) Basic and Systemic Mechanisms of Anesthesia. Elsevier, Amsterdam.

[57]   8th International Conference on Mechanisms of Anesthesia (MAC 2010); J.J.R. Macleod Auditorium, Toronto, Canada: 2010.