JSEMAT  Vol.5 No.2 , April 2015
Preparation, Characterization and Catalytic Activity of Alkyl Benzene Sulfonic Acid Carbon-Based Acid Catalyst
Based on starch and series of alkyl benzene sulfonic acid as the materials, a novel carbon-based solid acid catalyst is synthesized using hydrothermal method. This catalyst exhibits much higher catalytic activity in the reaction of esterification of Mono-fatty alcohol polyoxyethylene maleate esters with 1,4-butanediol. The structure of carbon-based solid acid catalyst was charactered by IR and XRD, characterizations showed that this catalyst exhibited high –SO3H loading. Reusability of the carbon-based solid acid catalyst for esterification showed that after recycling five times the activity remained unchanged.

Cite this paper
Luan, H. , Wu, Y. , Wu, W. , Chen, Q. , Zhang, H. , Liu, K. , Qu, G. and Ding, W. (2015) Preparation, Characterization and Catalytic Activity of Alkyl Benzene Sulfonic Acid Carbon-Based Acid Catalyst. Journal of Surface Engineered Materials and Advanced Technology, 5, 93-101. doi: 10.4236/jsemat.2015.52011.
[1]   Clark, J.H. (2002) Solid Acids for Green Chemistry. Accounts of Chemical Research, 35, 791-797.

[2]   Budarin, V., Clark, J.H., Hardy, J.J., Luque, R., Milkowski, K., Tavener, S.J. and Wilson, A.J. (2006) Starbons: New Starch- Derived Mesoporous Carbonaceous Materials with Tunable Properties. Angewandte Chemie International Edition, 45, 3782-3786.

[3]   Hara, M., Yoshida, T., Takagaki, A., Takata, T., Kondo, J.N. and Hayashi, S. (2004) A Carbon Material as a Strong Protonic Acid. Angewandte Chemie International Edition, 43, 2955-2958. http://dx.doi.org/10.1002/anie.200453947

[4]   Nakajima, K. and Hara, M. (2009) Amorphous Carbon Bearing Sulfonic Acid Groups in Mesoporous Silica as a Selective Catalyst. Chemistry of Materials, 21, 186-193.

[5]   Wang, X., Liu, R., Waje, M.M., Chen, Z., Yan, Y., Bozhilov, K.N. and Feng, P. (2007) Sulfonated Ordered Mesoporous Carbon as a Stable and Highly Active Protonic Acid Catalyst. Chemistry of Materials, 19, 2395-2397.

[6]   (a) Margolese, D., Melero, J.A., Christiansen, S.C., Chmelka, B.F. and Stucky, G.D. (2000) Direct Syntheses of Ordered SBA-15 Mesoporous Silica Containing Sulfonic Acid Groups. Chemistry of Materials, 12, 2448-2459.
(b) Melero, J.A., Stucky, G.D., van Grieken, R. and Morales, G. (2002) Direct Syntheses of Ordered SBA-15 Mesoporous Materials Containing Arenesulfonic Acid Groups. Journal of Materials Chemistry, 12, 1664-1670.

[7]   Dufaud, V., Davis, M.E. (2003) Design of Heterogeneous Catalysts via Multiple Active Site Positioning in Organic- Inorganic Hybrid Materials. Journal of the American Chemical Society, 125, 9403-9413.

[8]   (a) Das, D., Lee, J.F. and Cheng, S. (2001) Sulfonic Acid Functionalized Mesoporous MCM-41 Silica as a Convenient Catalyst for Bisphenol-A Synthesis. Chemical Communications, 2178-2179.
(b) Das, D. and Cheng, S. (2004) Selective Synthesis of Bisphenol-A over Mesoporous MCM Silica Catalysts Functionalized with Sulfonic Acid Groups. Journal of Catalysis, 223, 152-160. http://dx.doi.org/10.1016/j.jcat.2004.01.025

[9]   Macquarrie, D.J., Tavener, S.J. and Harmer, M.A. (2005) Novel Mesoporous Silica-Perfluorosulfonic Acid Hybrids as Strong Heterogeneous Bronsted Catalysts. Chemical Communications, 2363-2365. http://dx.doi.org/10.1039/b501431j

[10]   Toda, M., Takagaki, A., Okamura, M., Kondo, J.N., Hayashi, S., Domen, K. and Hara, M. (2005) Green Chemistry: Bio- diesel Made with Sugar Catalyst. Nature, 438, 178.

[11]   Okamura, M., Takagaki, A., Toda, M., Kondo, J.N., Domen, K., Tatsumi, T., Hara, M. and Hayashi, S. (2006) Acid- Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon. Chemistry of Materials, 18, 3039-3045.

[12]   Budarin, V.L., Clark, J.H., Luque, R. and Macquarrie, D.J. (2007) Versatile Mesoporous Carbonaceous Materials for Acid Catalysis. Chemical Communications, 2007, 634-636.

[13]   Xing, R., Liu, Y., Wang, Y., Chen, L., Wu, H., Jiang, Y., He, M. and Wu, P. (2007) Active Solid Acid Catalysts Prepared by Sulfonation of Carbonization-Controlled Mesoporous Carbon Materials. Microporous and Mesoporous Materials, 105, 41-48.

[14]   Xing, R., Liu, N., Liu, Y., Wu, H., Jiang, Y., Chen, L., He, M. and Wu, P. (2007) Novel Solid Acid Catalysts: Sulfonic Acid Group-Functionalized Mesostructured Polymers. Advanced Functional Materials, 17, 2455-2461.

[15]   (a) Ryoo, R., Joo, S.H. and Jun, S. (1999) Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediat- ed Structural Transformation. The Journal of Physical Chemistry B, 103, 7743-7746.
(a) Ryoo, R., Joo, S.H. and Jun, S. (1999) Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediat- ed Structural Transformation. The Journal of Physical Chemistry B, 103, 7743-7746.
(c) Joo, S.H., Choi, S.J., Oh, I., et al. (2001) Ordered Nanoporous Arrays of Carbon Supporting High Dispersions of Platinum Nanoparticles. Nature, 412, 169-172.

[16]   (a) Zhang, F.Q., Meng, Y., Gu, D., Yan, Y., Yu, C.Z., Tu, B. and Zhao, D.Y. (2005) Facile Aqueous Route to Synthesize Highly Ordered Mesoporous Polymers and Carbon Frameworks with Ia3d Bicontinuous Cubic Structure. Journal of the American Chemical Society, 127, 13508-13509. http://dx.doi.org/10.1021/ja0545721
(b) Meng, Y., Gu, D., Zhang, F., Shi, Y., Yang, H., Li, Z., Yu, C., Tu, B. and Zhao, D. (2005) Ordered Mesoporous Poly- mers and Homologous Carbon Frameworks: Amphiphilic Surfactant Templating and Direct Transformation. Angewandte Chemie International Edition, 44, 7053-7059. http://dx.doi.org/10.1002/anie.200501561
(c) Liang, C.D. and Dai, S.J. (2006) Synthesis of Mesoporous Carbon Materials via Enhanced Hydrogen-Bonding Interaction. Journal of the American Chemical Society, 128, 5316-5317. http://dx.doi.org/10.1021/ja060242k

[17]   Wang, X.-Q., Liu, R., Waje, M.M., Chen, Z.W., Yan, Y.S., Bozhilov, K.N. and Feng, P.Y. (2007) Sulfonated Ordered Mesoporous Carbon as a Stable and Highly Active Protonic Acid Catalyst. Chemistry of Materials, 19, 2395-2397.

[18]   Takagakia, A., Todaa, M., Okamuraa, M., Kondoa, J.N., Hayashib, S., Domenc, K. and Haraa, M. (2006) Esterification of Higher Fatty Acids by a Novel Strong Solid Acid. Catalysis Today, 116, 157-161.

[19]   Mo, X., Lopez, D., Suwannakarn, K., Liu, Y., Lotero, E., Goodwin Jr., J.G. and Lu, C. (2008) A Novel Sulfonated Car- bon Composite Solid Acid Catalyst for Biodiesel Synthesis. Journal of Catalysis, 254, 332-338.

[20]   Zong, M.-H., Duan, Z.-Q., Lou, W.-Y., Smith, T.J. and Wu, H. (2007) Preparation of a Sugar Catalyst and Its Use for Highly Efficient Production of Biodiese. Green Chemistry, 9, 434-437. http://dx.doi.org/10.1039/b615447f

[21]   Doe, P.H., Wade, W.H. and Schechter, R.S. (1977) Alkyl Benzene Sulfonates for Producing Low Interfacial Tensions between Hydrocarbons and Water. Journal of Colloid and Interface Science, 59, 525-531.

[22]   Yang, J., Zhao, Y., Li, Z.S., Qiao, W.H. and Cheng, L.B. (2005) Interfacial Tension Behavior of Mono-Isomeric Phenyltetradecane Sulfonates. Energy Sources, 27, 1013-1018.

[23]   Zhao, Y., Xu, Z.G., Li, Z.S., Qiao, W.H. and Cheng, L.B. (2006) Synthesis and Interfacial Tension Behavior of Heavy Alkyl Benzene Sulfonates. Petroleum Science and Technology, 24, 821-827. http://dx.doi.org/10.1081/LFT-200041180

[24]   Yu, T., Li, Z., Tong, W., Ding, W., Luo, S.-Q. and Luan, H.X. (2010) Molecular Organized Assemblies Formed by Tetradecyl Aryl Sulfonate. Acta Physico-Chimica Sinica, 26, 317-323.

[25]   National Standard GB/T6489-2-1986.

[26]   National Standard GB/T6489-3-1986.

[27]   Firestone, D. (2001) Official Methods and Recommended Practices of the American Oil Chemists Society. 4th Edition, AOCS Press, 8-53.

[28]   Titirici, M.-M., Antonietti, M. and Baccile, N. (2008) Hydrothermal Carbon from Biomass: A Comparison of the Local Structure from Poly- to Monosaccharides and Pentoses/Hexoses. Green Chemistry, 10, 1204-1212.

[29]   Budarin, V., Luque, R., Macquarrie, D.J. and Clark, J.H. (2007) Towards a Bio-Based Industry: Benign Catalytic Esterifications of Succinic Acid in the Presence of Water. Chemistry—A European Journal, 13, 6914-6919.

[30]   Zhang, B.H., Ren, J.W., Liu, X.H., Guo, Y., Guo, Y.L., Lu, G.Z. and Wang, Y.Q. (2010) Novel Sulfonated Carbonaceous Materials from p-Toluenesulfonic Acid/Glucose as a High-Performance Solid-Acid Catalyst. Catalysis Communications, 11, 629-632.

[31]   Tsubouchi, N., Xu, C.B. and Ohtsuka, Y. (2003) Carbon Crystallization during High-Temperature Pyrolysis of Coals and the Enhancement by Calcium. Energy & Fuels, 17, 1119-1125. http://dx.doi.org/10.1021/ef020265u

[32]   Lou, W.Y., Zong, M.H. and Duan, Z.Q. (2008) Efficient Production of Biodiesel from High Free Fatty Acid-Con- taining Waste Oils Using Various Carbohydrate-Derived Solid Acid Catalysts. Bioresource Technology, 99, 8752-8758.

[33]   Nakajima, K. and Hara, M. (2007) Environmentally Benign Production of Chemicals and Energy Using a Carbon- Based Strong Solid Acid. Journal of American Ceram Society, 90, 3725-3734.