IJAMSC  Vol.3 No.1 , March 2015
High-Performance Liquid Chromatograph (HPLC) Equipped with a Neurophysiological Detector (NPD) as a Tool for Studying Olfactory System Intoxication by the Organophosphate (OP) Pesticide Diazinon and the Influence of OP Pesticides on Reproduction
Author(s) Ilia Brondz
ABSTRACT
A neurophysiological detector (NPD) is a hybridization of olfactory system neurons of the fish crucian carp, Carassius carassius L., with a computerized electronic device connected to a high-performance liquid chromatograph (HPLC). This system makes it possible to measure neurophysiological activities in the olfactory system of C. carassius L. after exposure of this fish to alarm pheromones. The construction of the system was presented for the first time at the 3rd International Symposium on Separation in Bio Sciences SBS 2003 in I. Brondz, et al., The Fish Olfactory System Used as an In-Line HPLC Neurophysiologic Detector NPD, 3rd Int. Symposium on Separation in Bio Sciences SBS 2003: A 100 Years of Chromatography, 13-18 May, Moscow, Russia, 2003, Abstract O- 27, p. 95. A complete paper was published in I. Brondz, et al., Neurophysiologic Detector (NPD)—A Selective and Sensitive Tool in High-Performance Liquid Chromatography, Chromatography B: Biomedical Sciences and Applications, Vol. 800, No. 1-2, 2004, pp. 41-47, and the hybridization of living cells with an electronic device has been discussed (I. Brondz, et al., International Scientific-Technical Conference Sensors Electronics and Microsystems Technology (SEMST-1), 1-5 June, (Odessa), Ukraine, 2004, Plenum Lecture, Abstract p. 17; I. Brondz, et al., The European Chemoreception Research Organization ECRO 2004 Congress, 12-15 September, (Dijon), France, 2004, Abstract P-3; and I. Brondz, et al., Biosensors as Electronic Compounds for Detector in the High-Performance Liquid Chromatography (HPLC), Electronic Components and Systems, Vol. 3, No. 103, 2006, pp. 25-27). In the present study, an HPLC equipped with an NPD was used to assess the influence of organophosphate (OP) pesticides on olfactory sensory nerves and the modification of nerve signals from the olfactory organ. The results show that exposure of the olfactory system to OP pesticides can lead to disruption of normal reflexes and to significant suppression of individual sexual activity and, as a result, to the suppression of a population.

Cite this paper
Brondz, I. (2015) High-Performance Liquid Chromatograph (HPLC) Equipped with a Neurophysiological Detector (NPD) as a Tool for Studying Olfactory System Intoxication by the Organophosphate (OP) Pesticide Diazinon and the Influence of OP Pesticides on Reproduction. International Journal of Analytical Mass Spectrometry and Chromatography, 3, 14-24. doi: 10.4236/ijamsc.2015.31002.
References
[1]   Brondz, I., Hamdani, E.H. and Doving, K.B. (2003) The Fish Olfactory System Used as an In-Line HPLC Neurophysiologic Detector NPD. 3rd International Symposium on Separation in BioSciences SBS 2003: A 100 Years of Chromatography, Moscow, 13-18 May2003, Abstract O-27, 95.

[2]   Brondz, I., Hamdani, E.H. and Doving, K. (2004) Neurophysiologic Detector (NPD)—A Selective and Sensitive Tool in High-Performance Liquid Chromatography, Chromatography B: Biomedical Sciences and Applications, 800, 41-47.

[3]   Brondz, I., Hamdani, E.H. and Doving, K.B. (2004) International Scientific-Technical Conference Sensors Electronics and Microsystems Technology (SEMST-1), Odessa, 1-5 June 2004, Plenum Lecture, Abstract, 17.

[4]   Brondz, I., Hamdani, E.H. and Doving, K.B. (2004) The European Chemoreception Research Organization ECRO 2004 Congress, Dijon, 12-15 September 2004, Abstract, 3.

[5]   Brondz, I., Karaliova, L. and Ekeberg, D. (2006) Biosensors as Electronic Compounds for Detector in the High-Performance Liquid Chromatography (HPLC). Electronic Components and Systems, 3, 25-27. (In Russian)

[6]   Ray, A., Chatterjee, S., Ghosh, S., Kabir, S.N., Pakrashi, A. and Deb, C. (1991) Suppressive Effect of Quinalphos on the Activity of Accessory Sex Glands and Plasma Concentrations of Gonadotropins and Testosterone in Rats. Archives of Environmental Contamination and Toxicology, 21, 383-387.
http://dx.doi.org/10.1007/BF01060360

[7]   Browne, J.V. (2008) Chemosensory Development in the Fetus and Newborn. Newborn & Infant Nursing Reviews, 8, 180-186.
http://dx.doi.org/10.1053/j.nainr.2008.10.009

[8]   Fishelson, L., Golani, D., Galil, B. and Goren, M. (2010) Comparison of the Nasal Olfactory Organs of Various Species of Lizardfishes (Teleostei: Aulopiformes: Synodontidae) with Additional Remarks on the Brain. International Journal of Zoology, 2010, Article ID 807913.
http://dx.doi.org/10.1155/2010/807913

[9]   Kleerekoper, H. (1969) Olfaction in Fishes. Indiana University Press, Bloomington.

[10]   Hara, T.J. (1975) Olfaction in Fish. Progress in Neurobiology, 5, 271-335.
http://dx.doi.org/10.1016/0301-0082(75)90014-3

[11]   Hara, T.J. (1994) Olfaction and Gustation in Fish: An Overview. Acta Physiologica Scandinavica, 152, 207-217.
http://dx.doi.org/10.1111/j.1748-1716.1994.tb09800.x

[12]   Hara, T.J. (2005) Olfactory Responses to Amino Acids in Rainbow Trout: Revisited. In: Reutter, K. and Kapoor, B.G., Eds., Fish Chemosenses, Science Publishers, Enfield, 32-64.

[13]   Atema, J. (1983) Chemical Senses, Chemical Signals, and Feeding Behavior in Fishes. In: Bardach, J.E., Magnuson, J.J., May, R.C. and Reinhart, J.M., Eds., Fish Behavior and Its Use in the Capture and Culture of Fishes (ICLARM Conference 5), International Center for Living Aquatic Resources Management, Manila, 57-101.

[14]   Hara, T.J. and Zielinski, B.S. (1989) Structural and Functional Development of the Olfactory Organ in Teleosts. Transaction of the American Fishery Society, 118, 183-194.
http://dx.doi.org/10.1577/1548-8659(1989)118<0183:SAFDOT>2.3.CO;2

[15]   von Frish, K. (1938) Zur Psychologie des Fish-Schwarmes. Naturwissenschaften, 26, 601-606.
http://dx.doi.org/10.1007/BF01590598

[16]   von Frisch, K. (1942) über einen Schreckstoff der Fischhaut und seine biologische Bedeutung. Zeitschrift für Vergleichende Physiologie, 29, 46-145.

[17]   Gon, O. and Fishelson, L. (2009) Nasal Olfactory Organs and Olfactory Bulbs in Blennies. In: Patzner, R.A., Goncalves, E.J., Hastings, P.H.A. and Kapoor, B.G., Eds., The Biology of Blennies, Science Publishers, Enfield, 188-213.

[18]   Doving, K.B. (1966) Efferent Influence upon the Activity of Single Neurons in the Olfactory Bulb of the Burbot. Journal of Neurophysiology, 29, 675-683.

[19]   Meredith, M. (1978) Patterned Response to Odor in Single Neurones of Goldfish Olfactory Bulb: Influence of Odor Quality and Other Stimulus Parameters. Journal of General Physiology, 71, 615-643.
http://dx.doi.org/10.1085/jgp.71.6.615

[20]   Hamdani, El.H. and Doving, K.B. (2003) Sensitivity and Selectivity of Neurons in the Medial Region of the Olfactory Bulb to Skin Extract from Conspecifics in Crucian Carp, Carassius carassius. Chemical Senses, 28, 181-189.
http://dx.doi.org/10.1093/chemse/28.3.181

[21]   Lastein, S. (2008) Olfactory Processing of Sex and Alarm Cues in the Crucian Carp Carassius carassius. PhD Thesis, University of Oslo, Oslo.

[22]   Lastein, S., Hamdani El.H. and Doving K.B. (2008) Single Unit Responses to Skin Odorants from Conspecifics and Heterospecifics in the Olfactory Bulb of Crucian Carp Carassius carassius. The Journal of Experimental Biology, 211, 3529-3535.
http://dx.doi.org/10.1242/jeb.018739

[23]   Heczko E.J. and Seghers B.H. (1981) Effects of Alarm Substance on Schooling in the Common Shiner (Notropiscornutus, Cyprinidae). Environmental Biology of Fishes, 6, 25-29.
http://dx.doi.org/10.1007/BF00001796

[24]   Hüttel, R. (1941) Die chemische Untersuchung des Schreckstoffes aus Elritzenhaut. Naturwissenschaften, 29, 333-334.
http://dx.doi.org/10.1007/BF01481737

[25]   Hüttel, R. and Sprengling, G. (1943) über Ichthyopterin, einen blaufluorescierenden Stoff aus Fischhaut. Justus Liebigs Annalen der Chemie, 554, 69-82.
http://dx.doi.org/10.1002/jlac.19435540107

[26]   Purrmann, R. (1947) Pterine. Fiat-Bericht. Biochemie, 39, 84.

[27]   Korte, F. and Tschesche, R. (1951) über Pteridine. V. Mitteil: Die Konstitution des Ichthyopterins. Berichte der Deutschen Chemischen Gesellschaft, 84, 801-809.

[28]   Ziegler-Giinder, I. (1956) Pterine: Pigmente und Wirkstoffe in Tierreich. Biological Reviews, 31, 313-348.
http://dx.doi.org/10.1111/j.1469-185X.1956.tb01593.x

[29]   Pfeiffer, W. and Lemke, I. (l973) Untersuchungen zur Isolierung und Identifizireung des Schreckstoffes aus der Haut der Elritze, Phoxinus phoxinus L. (Cyprinidae, Ostariophysi, Pisces). Journal of Comparative Physiology, 82, 407-410.

[30]   Lebedeva, N.Ye., Malyukina, G.A. and Kasumyan, A.O. (1975) The Natural Repellent in the Skin of Cyprinids. Journal of Ichthyology, 15, 472-480.

[31]   Scholz, N.L., Truelove, N.K., French, B.L., Berejikian, B.A., Quinn, T.P., Casillas, E. and Collier, T.K. (2000) Diazinon Disrupts Antipredator and Homing Behaviors in Chinook Salmon (Oncorhynchus tshawytscha). Canadian Journal of Fisheries and Aquatic Sciences, 57, 1911-1918.
http://dx.doi.org/10.1139/f00-147

[32]   Petroianu, G.A. (2009). The Synthesis of Phosphor Ethers: Who Was Franz Anton Voegeli? Pharmazie, 64, 269-275.

[33]   Benmoyal-Segal, L., Vander, T., Shifman, S., Bryk, B., Ebstein, R., Marcus, E.-L., Stessman, J., Darvasi, A., Herishanu, Y., Friedman, A. and Soreq, H. (2005) Acetylcholinesterase/Paraoxonase Interactions Increase the Risk of Insecticide-Induced Parkinson’s Disease. The FASEB Journal, 19, 452-454.
http://www.fasebj.org/cgi/doi/10.1096/fj.04-2106fje

[34]   Gross, G.W. and Kreutzberg, G.W. (1978) Rapid Axoplasmic Transport in the Olfactory Nerve of the Pike: I. Basic Transport Parameters for Proteins and Amino Acids. Brain Research, 139, 65-76.
http://dx.doi.org/10.1016/0006-8993(78)90060-4

[35]   Miranda-Contreras, L., Gómez-Pérez, R., Rojas, G., Cruz, I., Berrueta, L., Salmen, S., Colmenares, M., Barreto, S., Balza, A., Zavala, L., Morales, Y., Molina, Y., Valeri, L., Contreras, C.A., and Osuna, J.A. (2013) Occupational Exposure to Organophosphate and Carbamate Pesticides Affects Sperm Chromatin Integrity and Reproductive Hormone Levels among Venezuelan Farm Workers. Journal of Occupational Health, 55, 195-203.

[36]   Racciatti, D., Vecchiet, J., Ceccomancini, A., Ricci, F. and Pizzigallo, E. (2001) Chronic Fatigue Syndrome Following a Toxic Exposure. The Science of the Total Environment, 270, 27-31.
http://dx.doi.org/10.1016/S0048-9697(00)00777-4

[37]   Behan, P.O. and Haniffah, B.A.G. (1994) Chronic Fatigue Syndrome: A Possible Delayed Hazard of Pesticide Exposure. Clinical Infectious Diseases, 18, S54.

[38]   Abou-Donia, M.B. (2003) Organophosphorus Ester-Induced Chronic Neurotoxicity. Archives of Environmental Health: An International Journal, 58, 484-497.

[39]   Davis, R.E., Reynolds, R.C. and Ricks, A. (1978) Suppression Behavior Increased by Telencephalic Lesions in the Teleost, Macropodus opercularis. Behavioral Biology, 24, 32-48.
http://dx.doi.org/10.1016/S0091-6773(78)92866-3

[40]   Poongothai, S., Ravikrishnan, R. and Murthy, P. (2007) Endocrine Disruption and Perspective Human Health Implications: A Review. The Internet Journal of Toxicology, 4. https://ispub.com/IJTO/4/2/3638

[41]   Brondz, I. and Brondz, A. (2011) Suppression of Immunity by Some Pesticides, Xenobiotics, and Industrial Chemicals. In Vitro Model. Journal of Biophysical Chemistry, 2, 226-232.
http://dx.doi.org/10.4236/jbpc.2011.23028

 
 
Top