[1] Nikolaevskii, V.N. (1989) Recent Advances in Engineering Science. In: Kohand, S.L. and Speciale, C.G., Eds., Lecture Notes in Engineering, No. 39, Springer-Verlag, Berlin, 210.
[2] Tribelsky, M.I. and Tsuboi, K. (1996) Newscenario to Transition to Slow Turbulence. Physical Review Letters, 76, 1631.
http://dx.doi.org/10.1103/PhysRevLett.76.1631
[3] Tribel’skii, M.I. (1997) Short-Wavelength Instability and Transition to Chaos in Distributed Systems with Additional Symmetry. Physics-Uspekhi, 40, 159-180.
[4] Toral, R., Xiong, G.X., Gunton, J.D. and Xi, H.W. (2003) Wavelet Description of the Nikolaevskii Model. Journal of Physics A: Mathematical and General, 36, 1323.
http://dx.doi.org/10.1088/0305-4470/36/5/310
[5] Xi, H.W., Toral, R., Gunton, D. and Tribelsky, M.I. (2003) Extensive Chaos in the Nikolaevskii Model. Physical Review E, 61, R17.
http://dx.doi.org/10.1103/PhysRevE.62.R17
[6] Tanaka, D. (2007) Amplitude Equations of Nikolaevskii Turbulence. RIMS Kokyuroku Bessatsu, B3, 121-129.
[7] Fujisaka, H. (2003) Amplitude Equation of Higher-Dimensional Nikolaevskii Turbulence. Progress of Theoretical Physics, 109, 911-918.
http://dx.doi.org/10.1143/PTP.109.911
[8] Tanaka, D. (2005) Bifurcation Scenario to Nikolaevskii Turbulence in Small Systems. Journal of the Physical Society of Japan, 74, 2223-2225.
[9] Anishchenko, V.S., Vadivasova, T.E., Okrokvertskhov, G.A. and Strelkova, G.I. (2005) Statistical Properties of Dynamical Chaos. Physics-Uspekhi, 48, 151.
http://dx.doi.org/10.1070/PU2005v048n02ABEH002070
[10] Tsinober, A. (2014) The Essence of Turbulence as a Physical Phenomenon. 6, 169 p.
http://www.springer.com/gp/book/9789400771796
[11] Ivancevic, V.G. (2007) High-Dimensional Chaotic and Attractor Systems: A Comprehensive Introduction. XV, 697 p.
http://www.springer.com/gp/book/9781402054556
[12] Herbst, B.M. and Ablowitz, M.J. (1989) Numerically Induced Chaos in the Nonlinear Schrodinger Equation. Physical Review Letters, 62, 2065.
http://dx.doi.org/10.1103/PhysRevLett.62.2065
[13] Ablowitz, M.J. and Herbst, B.M. (1990) On Homoclinic Structure and Numerically Induced Chaos for the Nonlinear Schrodinger Equation. SIAM Journal on Applied Mathematics, 50, 339-351.
http://dx.doi.org/10.1137/0150021
[14] Li, Y. and Wiggins, S. (1997) Homoclinic Orbits and Chaos in Discretized Perturbed NLS Systems: Part II. Symbolic Dynamics. Journal of Nonlinear Science, 7, 315-370.
http://dx.doi.org/10.1007/BF02678141
[15] Blank, M.L. (1997) Discreteness and Continuity in Problems of Chaotic Dynamics. Translations of Mathematical Monographs. 161 p.
http://www.ams.org/bookstore-getitem/item=MMONO-161
[16] Fadnavis, S. (1998) Some Numerical Experiments on Round-Off Error Growth in Finite Precision Numerical Computation.
http://arxiv.org/abs/physics/9807003v1
[17] Fiedler, B., Ed. (2002) Handbook of Dynamical Systems. Volume 2, 1086.
http://www.sciencedirect.com/science/handbooks/1874575X/2
[18] Gold, B. and Rader, C.M. (1966) Effects of Quantization Noise in Digital Filters. Proceedings of Joint Computer Conference, 26-28 April 1966, 1-8.
http://users.ece.utexas.edu/~adnan/comm/sqnr-early-paper-66.pdf
[19] Bennett, W.R. (1948) Spectra of Quantized Signals. Bell System Technical Journal, 27, 446-472.
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01340.x
[20] Vladimirov, I.G. and Diamond, P. (2002) A Uniform White-Noise Model for Fixed-Point Roundoff Errors in Digital Systems. Automation and Remote Control, 63, 753-765.
http://dx.doi.org/10.1023/A:1015493820232
[21] Moller, M., Lange, W., Mitschke, F., Abraham, N.B. and Hubner, U. (1989) Errors from Digitizing and Noise in Estimating Attractor Dimensions. Physics Letters A, 138, 176-182.
[22] Widrow, B. and Kollar, I. (2008) Quantization Noise: Round off Error in Digital Computation, Signal Processing, Control, and Communications. Cambridge University Press, Cambridge.
[23] Foukzon, J. (2005) Advanced Numerical-Analytical Methods for Path Integral Calculation and Its Application to Some Famous Problems of 3-D Turbulence Theory. New Scenario for Transition to Slow Turbulence. Preliminary Report. Meeting: 1011, Lincoln, Nebraska, AMS CP1, Session for Contributed Papers.
http://www.ams.org/meetings/sectional/1011-76-5.pdf
[24] Foukzon, J. (2004) New Scenario for Transition to Slow Turbulence. Turbulence Like Quantum Chaos in Three Dimensional Model of Euclidian Quantum Field Theory. Preliminary Report. Meeting: 1000, Albuquerque, New Mexico, SS 9A, Special Session on Mathematical Methods in Turbulence.
http://www.ams.org/meetings/sectional/1000-76-7.pdf
[25] Foukzon, J. (2008) New Scenario for Transition to Slow Turbulence. Turbulence like Quantum Chaos in Three Dimensional Model of Euclidian Quantum Field Theory.
http://arxiv.org/abs/0802.3493
[26] Foukzon, J. (2014) Large Deviations Principles of Non-Freidlin-Wentzell Type. Communications in Applied Sciences, 2, 230-363.
[27] Foukzon, J. (2014) Large Deviations Principles of Non-Freidlin-Wentzell Type. 227 p.
http://arxiv.org/abs/0803.2072
[28] Colombeau, J. (1985) Elementary Introduction to New Generalized Functions Math. Studies 113, North Holland.
[29] Catuogno, P. and Olivera, C. (2013) Strong Solution of the Stochastic Burgers Equation.
http://arxiv.org/abs/1211.6622v2
[30] Oberguggenberger, M. and Russo, F. (1998) Nonlinear SPDEs: Colombeau Solutions and Pathwise Limits.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.8866
[31] Walsh, J.B. Finite Element Methods for Parabolic Stochastic PDE’s. Potential Analysis, 23, 1-43.
http://link.springer.com/article/10.1007/s11118-004-2950-y
[32] Suli, E. (2000) Lecture Notes on Finite Element Methods for Partial Differential Equations. University of Oxford, Oxford.
http://people.maths.ox.ac.uk/suli/fem.pdf
[33] Knabner, P. and Angermann, L. (2003) Numerical Methods for Elliptic and Parabolic Partial Differential Equations.
http://link.springer.com/book/10.1007/b97419
[34] Dijkgraaf, R., Orlando, D. and Reffert, S. (2010) Relating Field Theories via Stochastic Quantization. Nuclear Physics B, 824, 365-386.
http://dx.doi.org/10.1016/j.nuclphysb.2009.07.018
[35] Masujima, M. (2009) Path Integral Quantization and Stochastic Quantization. 2nd Edition.
http://www.gettextbooks.com/isbn/9783540665427