AHS  Vol.4 No.1 , March 2015
Archimedes’ Psammites and the Tradition of Italic Thought of Science
ABSTRACT
It is intended to confute the opinion of a Platonic Archimedes, through the study of the fundamental theses of his Sandreckoner (Psammites) and of its particular logical-linguistic aspects, but especially of an Aristotelic Archimedes, as Delsedine (1970) maintains in his article “L’infini numérique dans l’Arénaire d’Archimède”. He writes: The Sandreckonerrépond à la nécessitè d’adapter la notation numérique à l’idée de l’infinité potentielle de l’ensamble des nombres naturales”1. First, it is focused on the general aspects of the work, which highlight its Enlightenment and Py-thagorean—Democritean character, then it is passed to the analysis of its particular linguistic and logical aspects and of its fundamental theses, translated into symbolic form, in which it is still giving prominence to its Pythagorean-Democritean or Italic character (Boscarino, 1999, 2010, 2011, 2012).

Cite this paper
Boscarino, G. (2015) Archimedes’ Psammites and the Tradition of Italic Thought of Science. Advances in Historical Studies, 4, 8-16. doi: 10.4236/ahs.2015.41002.
References
[1]   Aristotle (1973). De caelo. Bari: Laterza.

[2]   Aristotle (1971). Metaphysics. Bari: Laterza.

[3]   Boscarino, G. (1999). Tradizioni di pensiero. La tradizione filosofica italica della scienza e della realtà (p. 412). Sortino (SR): La scuola italica. (To be Consulted by Anyone Who Wants a Wider and More Complex Treatment over the Centuries VI, V, IV BC of the Greek World, the Two Traditions of Thought in Conflict, the Pythagorean-Parmenidean-Demo- critean Tradition and the Platonic-Aristotelian Tradition.)

[4]   Boscarino, G. (2010). The Mystery of Archimedes. Archimedes, Physicist and Mathematician, Anti-Platonic and Anti-Aris- totelian Philosopher. In The Genius of Archimedes—23 Centuries of Influence on Mathematics, Science and Engineering. History of Mechanism and Machine Science (Vol. 11, pp. 313-322). Springer.

[5]   Boscarino, G. (2011). The Onto-Epistemological Background of Archimedes’ Mathema. Selected Proceedings of the SILFS 2010 International Congress. Logic and Philosophy of Science, 9, 111-129.

[6]   Boscarino, G. (2012). At the Origins of the Concepts of Máthema and Mekhané: Aristotle’s Mekhanikà and Archimedes’ Tropos Mekhanikòs. In T. Koetsier, & M. Ceccarelli (Eds.), Explorations in the History of Machines and Mechanisms Proceedings of HMM 2012 (Vol. 15, pp.449-461). Springer.

[7]   Delsedine, P. (1970). L’infininumériquedansl’ Arénaired’ Archimède. Archive for History of Exact Sciences, I, 345-359. http://dx.doi.org/10.1007/BF00329816

[8]   Delsedine, P. (1970). Uno strumento astronomico descritto nel corpus archimedeo: La dioptre di Archimede. Physis-Rev. Internaz.Storia Sci., 2, 173-196.

[9]   Diels-Kranz, DK (2004). Presocratici. Bari: Laterza.

[10]   Dijksterhuis, E. J. (1956). Archimedes. Copenhagen.

[11]   Eecke, P. V. (1921). Les oevres completes d’Archimède. Paris: Bachelier.

[12]   Frajese, A. (1974). Opere di Archimede. Torino: Utet.

[13]   Gardies, J. L. (1980). La méthodeméecanique et le platonisme d’Archimède. Revue Philosophique de la France e de l’Etranger, Tome CLXX, 39-43.

[14]   Heath, S. T. (1912). The Works of Archimedes. New York: Dover Publications, Inc.

[15]   Loria, G. (1914). Le scienze esatte nell’antica Grecia. Torino: Hoepli.

[16]   Luria, S. (2007). Democrito. Milano: Bombiani.

[17]   Mondolfo, R. (1967). L’infinito nel pensiero dell’antichità classica. Firenze: La Nuova Italia.

[18]   Peano, G. (1960). Formulario Mathematico. Roma: Cremonese

[19]   Plutarch’s Lives (2001). Marcellus. New York: The Modern Library.

[20]   Virieux, R. A. (1979). Le platonismed’ Archimède. Revue Philosophique de la France e de l’Etranger, Tome CLXIX, 189- 192.

 
 
Top