[1] Brown, D.J. (1984) Pyrimidines and Their Benzo Derivatives. Comprehensive Heterocyclic Chemistry, 3, 57-155.
http://dx.doi.org/10.1016/B978-008096519-2.00035-7
[2] Wamhoff, H., Dzenis, J. and Hirota, K. (1992) Uracils: Versatile Starting Materials in Heterocyclic Synthesis. Advances in Heterocyclic Chemistry, 55, 129-259.
http://dx.doi.org/10.1016/S0065-2725(08)60222-6
[3] González-Vallinas, M., Molina, S., Vicente, G., de la Cueva, A., Vargas, T., Santoyo, S., García-Risco, M.R., Fornari, T., Reglero, G. and de Molina, A.R. (2013) Antitumor Effect of 5-Fluorouracil Is Enhanced by Rosemary Extract in Both Drug Sensitive and Resistant Colon Cancer Cells. Pharmacological Research, 72, 61-68.
http://dx.doi.org/10.1016/j.phrs.2013.03.010
[4] Innominato, P.F., Lévi, F.A. and Bjarnason, G.A. (2010) Chronotherapy and the Molecular Clock: Clinical Implications in Oncology. Advanced Drug Delivery Reviews, 62, 979-1001.
http://dx.doi.org/10.1016/j.addr.2010.06.002
[5] Isanbor, C. and O’Hagan, D. (2006) Fluorine in Medicinal Chemistry: A Review of Anti-Cancer Agents. Journal of Fluorine Chemistry, 127, 303-319.
http://dx.doi.org/10.1016/j.jfluchem.2006.01.011
[6] Muzzalupo, R., Tavano, L. and La Mesa, C. (2013) Alkyl Glucopyranoside-Based Niosomes Containing Methotrexate for Pharmaceutical Applications: Evaluation of Physico-Chemical and Biological Properties. International Journal of Pharmaceutics, 458, 224-229.
http://dx.doi.org/10.1016/j.ijpharm.2013.09.011
[7] Wu, Z.Q., Shah, A., Patel, N. and Yuan, X.D. (2010) Development of Methotrexate Proline Prodrug to Overcome Resistance by MDA-MB-231 Cells. Bioorganic Medicinal Chemistry Letters, 20, 5108-5112.
http://dx.doi.org/10.1016/j.bmcl.2010.07.024
[8] Pectasides, D., Pectasides, E., Papaxoinis, G., Xiros, N., Kamposioras, K., Tountas, N. and Economopoulos, T. (2010) Methotrexate, Paclitaxel, Ifosfamide, and Cisplatin in Poor-Risk Nonseminomatous Germ Cell Tumors. Urologic Oncology: Seminars and Original Investigations, 28, 617-623.
http://dx.doi.org/10.1016/j.urolonc.2008.10.013
[9] Banerjee, D., Mayer-Kuckuk, P., Capiaux, G., Budak-Alpdogan, T., Gorlick, R. and Bertino, J.R. (2002) Novel Aspects of Resistance to Drugs Targeted to Dihydrofolate Reductase and Thymidylate Synthase. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1587, 164-173.
http://dx.doi.org/10.1016/S0925-4439(02)00079-0
[10] Mackey, J.R., Baldwin, S.A., Young, J.D. and Cass, C.E. (1998) Nucleoside Transport and Its Significance for Anticancer Drug Resistance. Drug Resistance Updates, 1, 310-324.
http://dx.doi.org/10.1016/S1368-7646(98)80047-2
[11] Marques, S.M., Enyedy, E.A., Supuran, C.T., Krupenko, N.I., Krupenko, S.A. and Santos, M.A. (2010) Pteridine-Sulfonamide Conjugates as Dual Inhibitors of Carbonic Anhydrases and Dihydrofolate Reductase with Potential Antitumor Activity. Bioorganic & Medicinal Chemistry, 18, 5081-5089.
http://dx.doi.org/10.1016/j.bmc.2010.05.072
[12] Mauritz, R., Peters, J., Priest, D.G., Assaraf, Y.G., Drori, S., Kathmann, I., Noordhuis, P., Bunni, M.A., Rosowsky, A., Schornagel, J.H., Pinedo, H.M. and Jansen, G. (2002) Multiple Mechanisms of Resistance to Methotrexate and Novel Antifolates in Human CCRF-CEM Leukemia Cells and Their Implications for Folate Homeostasis. Biochemical Pharmacology, 63, 105-115.
http://dx.doi.org/10.1016/S0006-2952(01)00824-3
[13] Gangjee, A., Adair, O. and Queener, S.F. (1999) Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase Inhibitors and Antitumor Agents:? Synthesis and Biological Activities of 2,4-Diamino-5-methyl-6-[(monosubstituted anilino)methyl]pyrido[2,3-d]pyrimidines. Journal of Medicinal Chemistry, 42, 2447-2455.