ABB  Vol.6 No.3 , March 2015
RimJ-Catalyzed Sequence-Specific Protein N-Terminal Acetylation in Escherichia coli
ABSTRACT
In order to establish the sequence dependence of RimJ-mediated protein N-terminal acetylation in E. coli, the Z-domain variants differing by the second or third amino acid residue were expressed and analyzed by mass spectrometry. Only subsequent to the initiating methionine residue cleavage, the RimJ-catalyzed N-terminal acetylation mainly occurred at the N-terminal serine and threonine residues and was significantly enhanced by hydrophobic or negatively charged residues in the penultimate position.

Cite this paper
Perez, L. and Ryu, Y. (2015) RimJ-Catalyzed Sequence-Specific Protein N-Terminal Acetylation in Escherichia coli. Advances in Bioscience and Biotechnology, 6, 182-193. doi: 10.4236/abb.2015.63018.
References
[1]   Walsh, C. (2006) Posttranslational Modification of Proteins: Expanding Nature’s Inventory. Roberts and Co. Publishers, Englewood.

[2]   Waller, J.P. (1963) Nh2-Terminal Residues of Proteins from Cell-Free Extracts of E. coli. Journal of Molecular Biology, 7, 483-496.
http://dx.doi.org/10.1016/S0022-2836(63)80096-0

[3]   Arnold, R.J. and Reilly, J.P. (1999) Observation of Escherichia coli Ribosomal Proteins and Their Posttranslational Modifications by Mass Spectrometry. Analytical Biochemistry, 269, 105-112.
http://dx.doi.org/10.1006/abio.1998.3077

[4]   Smith, V.F., Schwartz, B.L., Randall, L.L. and Smith, R.D. (1996) Electrospray Mass Spectrometric Investigation of the Chaperone SecB. Protein Science, 5, 488-494.
http://dx.doi.org/10.1002/pro.5560050310

[5]   Arai, K., Clark, B.F.C., Duffy, L., Jones, M.D., Kaziro, Y., Laursen, R.A., Litalien, J., Miller, D.L., Nagarkatti, S., Nakamura, S., Nielsen, K.M., Petersen, T.E., Takahashi, K. and Wade, M. (1980) Primary Structure of Elongation-Factor Tu from Escherichia coli. Proceedings of the National Academy of Sciences USA, 77, 1326-1330.
http://dx.doi.org/10.1073/pnas.77.3.1326

[6]   Yoshikawa, A., Isono, S., Sheback, A. and Isono, K. (1987) Cloning and Nucleotide Sequencing of the Genes RimI and RimJ Which Encode Enzymes Acetylating Ribosomal-Proteins S18 and S5 of Escherichia coli K12. Molecular Genetics and Genomics, 209, 481-488.
http://dx.doi.org/10.1007/BF00331153

[7]   Tanaka, S., Matsushita, Y., Yoshikawa, A. and Isono, K. (1989) Cloning and Molecular Characterization of the Gene RimL Which Encodes an Enzyme Acetylating Ribosomal Protein L12 of Escherichia coli K12. Molecular Genetics and Genomics, 217, 289-293.
http://dx.doi.org/10.1007/BF02464895

[8]   Scott, D.C., Monda, J.K., Bennett, E.J., Harper, J.W. and Schulman, B.A. (2011) N-Terminal Acetylation Acts as an Avidity Enhancer within an Interconnected Multiprotein Complex. Science, 334, 674-678.
http://dx.doi.org/10.1126/science.1209307

[9]   Arnesen, T. (2011) Towards a Functional Understanding of Protein N-Terminal Acetylation. PLOS Biology, 9, e1001074.
http://dx.doi.org/10.1126/science.1209307

[10]   Andersen, J.L. and Kornbluth, S. (2011) Meeting the (N-Terminal) End with Acetylation. Cell, 146, 503-505.
http://dx.doi.org/10.1016/j.cell.2011.07.024

[11]   Hwang, C.S., Shemorry, A. and Varshavsky, A. (2010) N-Terminal Acetylation of Cellular Proteins Creates Specific Degradation Signals. Science, 327, 973-977.
http://dx.doi.org/10.1126/science.1183147

[12]   Van Doren, S.R., Wei, S., Gao, G., DaGue, B.B., Palmier, M.O., Bahudhanapati, H. and Brew, K. (2008) Inactivation of N-TIMP-1 by N-Terminal Acetylation When Expressed in Bacteria. Biopolymers, 89, 960-968.
http://dx.doi.org/10.1002/bip.21043

[13]   Luka, Z., Loukachevitch, L.V. and Wagner, C. (2008) Acetylation of N-Terminal Valine of Glycine N-Methyltransferase Affects Enzyme Inhibition by Folate. Biochimica et Biophysica Acta, 1784, 1342-1346.
http://dx.doi.org/10.1016/j.bbapap.2008.04.016

[14]   Jackson, C.L. (2004) N-Terminal Acetylation Targets GTPases to Membranes. Nature Cell Biology, 6, 379-380.
http://dx.doi.org/10.1038/ncb0504-379

[15]   Ogawa, H., Gomi, T., Takata, Y., Date, T. and Fujioka, M. (1997) Recombinant Expression of Rat Glycine N-Methyl-transferase and Evidence for Contribution of N-Terminal Acetylation to Cooperative Binding of S-Adenosylmethionine. Biochemical Journal, 327, 407-412.

[16]   Urbancikova, M. and Hitchcock-DeGregori, S.E. (1994) Requirement of Amino-Terminal Modification for Striated Muscle Al-pha-Tropomyosin Function. The Journal of Biological Chemistry, 269, 24310-24315.

[17]   Charbaut, E., Redeker, V., Rossier, J. and Sobel, A. (2002) N-Terminal Acetylation of Ectopic Recombinant Proteins in Escherichia coli. FEBS Letters, 529, 341-345.
http://dx.doi.org/10.1016/S0014-5793(02)03421-X

[18]   Honda, S., Asano, T., Kajio, T. and Nishimura, O. (1989) Escherichia coli-Derived Human Interferon-Gamma with Cys-Tyr-Cys at the N-Terminus Is Partially N Alpha-Acylated. Archives of Biochemistry and Biophysics, 269, 612-622.
http://dx.doi.org/10.1016/0003-9861(89)90147-1

[19]   Wu, J., Chang, S., Gong, X., Liu, D. and Ma, Q. (2006) Identification of N-Terminal Acetylation of Recombinant Human Prothymosin Alpha in Escherichia coli. Biochimica et Biophysica Acta, 1760, 1241-1247.
http://dx.doi.org/10.1016/j.bbagen.2006.04.001

[20]   Grutter, M.G., Marki, W. and Walliser, H.P. (1985) Crystals of the Complex between Recombinant N-Acetyleglin c and Subtilisin—A Preliminary Characterization. The Journal of Biological Chemistry, 260, 1436-1437.

[21]   Takao, T., Kobayashi, M., Nishimura, O. and Shimonishi, Y. (1987) Chemical Characterization of Recombinant Human Leukocyte Interferon A Using Fast Atom Bombardment Mass Spectrometry. The Journal of Biological Chemistry, 262, 3541-3547.

[22]   Bariola, P.A., Russell, B.A., Monahan, S.J. and Stroop, S.D. (2007) Identification and Quantification of Nα-Acetylated Y. pestis Fusion Protein F1-V Expressed in Escherichia coli Using LCMSE. Journal of Biotechnology, 130, 11-23.
http://dx.doi.org/10.1016/j.jbiotec.2007.02.024

[23]   Ren, Y., Yao, X., Dai, H., Li, S., Fang, H., Chen, H. and Zhou, C. (2011) Production of Nα-Acetylated Thymosin Alpha1 in Escherichia coli. Microbial Cell Factories, 10, 26.
http://dx.doi.org/10.1186/1475-2859-10-26

[24]   Fang, H.Q., Zhang, X., Shen, L., Si, X.X., Ren, Y.T., Dai, H.M., Li, S.L., Zhou, C.L. and Chen, H.P. (2009) RimJ Is Responsible for Nα-Acetylated of Thymosin Alpha 1 in Escherichia coli. Applied Microbiology and Biotechnology, 84, 99-104.
http://dx.doi.org/10.1007/s00253-009-1994-8

[25]   Bernal-Perez, L.F., Sahyouni, F., Prokai, L. and Ryu, Y. (2012) RimJ-Mediated Context-Dependent N-Terminal Acetylation of the Recombinant Z-Domain Protein in Escherichia coli. Molecular BioSystems, 8, 1128-1130.
http://dx.doi.org/10.1039/c2mb05499j

[26]   Hirel, P.H., Schmitter, J.M., Dessen, P., Fayat, G. and Blanquet, S. (1989) Extent of N-Terminal Methionine Excision from Escherichia coli Proteins Is Governed by the Side-Chain Length of the Penultimate Amino-Acid. Proceedings of the National Academy of Sciences of the United States of America, 86, 8247-8251.
http://dx.doi.org/10.1073/pnas.86.21.8247

[27]   Gentle, I.E., De Souza, D.P. and Baca, M. (2004) Direct Production of Proteins with N-Terminal Cysteine for Site-Specific Conjugation. Bioconjugate Chemistry, 15, 658-663.
http://dx.doi.org/10.1021/bc049965o

[28]   Polevoda, B. and Sherman, F. (2003) N-Terminal Acetyltransferases and Sequence Requirements for N-Terminal Acetylation of Eukaryotic Proteins. Journal of Molecular Biology, 325, 595-622.
http://dx.doi.org/10.1016/S0022-2836(02)01269-X

[29]   Falb, M., Aivaliotis, M., Garcia-Rizo, C., Bisle, B., Tebbe, A., Klein, C., Konstantinidis, K., Siedler, F., Pfeiffer, F., and Oesterhelt, D. (2006) Archaeal N-Terminal Protein Maturation Commonly Involves N-Terminal Acetylation: A Large-Scale Proteomics Survey. Journal of Molecular Biology, 362, 915-924.
http://dx.doi.org/10.1016/j.jmb.2006.07.086

 
 
Top