Constructing Entanglers in 2-Players–N-Strategies Quantum Game

Yshai Avishai^{*}

Show more

References

[1] Nielsen, M.A. and Chuang, I.L. (2000) Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, p 26, Fig. 1.13.

[2] Band, Y.B. and Avishai, Y. (2013) Quantum Mechanics with Application to Nanotechnology and Information Science. Academic Press, Waltham, p 217.

[3] Goldenberg, L., Vaidman, L. and Wiesner, S. (1999) Quantum Gambling. Physical Review Letters, 82, 3356.

http://dx.doi.org/10.1103/PhysRevLett.82.3356

[4] Meyer, D. (1999) Quantum Strategies. Physical Review Letters, 82, 1052-1055.

http://dx.doi.org/10.1103/PhysRevLett.82.1052

[5] Eisert, J., Wilkens, M. and Lewenstein, M. (1999) Quantum Games and Quantum Strategies. Physical Review Letters, 83, 3077-3080.

http://dx.doi.org/10.1103/PhysRevLett.83.3077

[6] Flitney, A.P. and Abbott, D. (2002) An Introduction to Quantum Game Theory. Fluctuation and Noise Letters, 2, R175-R187. arXiv: quant-ph/0208069.

http://dx.doi.org/10.1142/S0219477502000981

[7] Piotrowski, E.W. andSlaadkowski, J. (2003) An Invitation to Quantum Game Theory. International Journal of Theoretical Physics, 42, 1089-1099.

http://dx.doi.org/10.1023/A:1025443111388

[8] Landsburg, S.E. (2004) Quantum Game Theory. Notices of the American Mathematical Society, 51, 394-399.

[9] Iqbal, A. (2004) Studies in the Theory of Quantum Games. Ph.D thesis, Quaid-i-Azam University, Islamabad, 137 p. arXiv:quant-phys/050317.

[10] Sharif, P. and Heydari, H. (2014) Quantum Information and Computation, 14, 0295.

[11] Landsburg, S.E. (2011) Nash Equilibria in Quantum Games. Proceedings of the American Mathematical Society, 139, 4423-4434. arXiv:1110.1351.

[12] Benjamin, S.C. and Hayden, P.M. (2001) Comment on “Quantum Games and Quantum Strategies”. Physical Review Letters, 87, Article ID: 069801.

http://dx.doi.org/10.1103/PhysRevLett.87.069801

[13] Du, J., Li, H., Xu, X., Han, R. and Zhou, X. (2002) Entanglement Enhanced Multiplayer Quantum Games. Physics Letters A, 302, 229-233.

http://dx.doi.org/10.1016/S0375-9601(02)01144-1

[14] Du, J., Xu, X., Li, H., Zhou, X. and Han, R. (2002) Playing Prisoner’s Dilemma with Quantum Rules. Fluctuation and Noise Letters, 2, R189.

http://dx.doi.org/10.1142/S0219477502000993

[15] Flitney, A.P. and Abbott, D. (2003) Advantage of a Quantum Player over a Classical One in 2 × 2 Quantum Games. Proceedings of the Royal Society A, 459, 2463-2474.

http://dx.doi.org/10.1098/rspa.2003.1136

[16] Flitney, A.P. and Hollenberg, L.C.L. (2007) Nash Equilibria in Quantum Games with Generalized Two-Parameter Strategies. Physics Letters A, 363, 381-388.

http://dx.doi.org/10.1016/j.physleta.2006.11.044

[17] Avishai, Y. (2012) Some Topics in Quantum Games. MA Thesis in Economics, Ben Gurion University, Beersheba, 96 p. arXiv:1306.0284. (Submitted on August 2012 to the Faculty of Social Science and Humanities at the Ben Gurion University).

[18] Osborne, M.J. and Rubinstein, A. (2011) A Course in Game Theory. The MIT Press, Version: 2011-1-19. Cambridge, Massachusetts, London, England.